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Planar  Three-Dimensional  Constrained  Lenses 

Abstract-A new design for  a beamforming lens is presented.  Both 
faces are  planar  arrays of radiating  elements  interconnected by transmis- 
sion lines  whose  length  varies as  a  function  of radius.  While  the  front  face 
elements  are  regularly spaced,  the back face elements  are  displaced 
radially from their corresponding front  face elements,  the  amount of 
displacement also being a  function  of radius. We $bow  that  such a lens is 
capable of forming  low  sidelobe  beams  over  an  angular  sector 36 
beamwidths  across in all planes of $ by switching  between  clusters of only 
seven feed elements.  Because  both faces are  planar,  construction of 
lightweight  lenses for multibeam  antennas should be feasible. 

M 
I. INTRODUCTION 

ULTIPLE-BEAM  antenna  concepts  usually call for 
several feeds sharing .a common  reflector or lens 

aperture, with  beam steering accomplished by switching 
between feeds [ l ] .  Because  of  defocusing  effects reflectors 
(and certain lenses) cannot form low-sidelobe  beams over 
more than  a  few  beamwidths  without  using large numbers of 
feed elements, and  consequently elaborate beam-switching 
networks [2] ,  [3]. Multifocal lens antennas  have attracted 
increasing interest because of their superior off-axis focusing, 
which leads to simpler feeds, and  because  they  lack  feed 
blockage. Yet, those three dimensional lenses developed to 
date such as metal-plate  and dielectric lenses are too heavy  and 
lossy to be practical for large aperture antennas  unless  they are 
zoned, which  makes them frequency-sensitive and also intro- 
duces shadowing effects. Furthermore, they require at least 
one of the lens surfaces to be curved [4] making  fabrication 
difficult, again, particularly so for large apertures. 

This paper introduces a  design for a  three-dimensional 
discrete-element, or “constrained” lens whose front and back 
surfaces are both planar. It uses only  two geometric degrees of 
freedom to achieve good  off-axis focusing: the first in the 
length of transmission line joining elements of opposing faces; 
and the second in the varying radial  position  of elements on the 
back face with respect to those on the front. We  will  show  that 
such  a lens can form low  sidelobe  pencil  beams over a  solid 
angle at least 36 beamwidths across, using clusters of only 
seven feed elements and no phase or amplitude correction for 
defocusing. 

The general concept is first described in terms of a two- 
dimensional lens, and later extended to the  three-dimensional 
case. Detailed  discussions of its  focusing properties and  locus 
of scan are presented. Last, a  possible  implementation in 
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microstip is shown as an illustration of the potential ease of 
fabrication  of lightweight lenses for large apertures. 

II. DESIGN PRINCIPLES, TWO-DIMENSIONAL  LENS 
A. The  Lens  Equations 

In contrast to the beamformer designs of  Ruze [5] and 
Rotman [6] ,  we first impose the constraint that  both  inner  and 
outer lens contours are linear, as shown in Fig. 1 .  With  that 
limitation, there can be at most two perfect focal  points. Since 
we  want  a symmetric lens we  choose to locate these points  at 
( y  , z)  = ( - F cos Bo, & F sin 0,). Path length equality to plane 
wavefronts directed at, respectively, =F eo requires 

[F2+p2-2pF sin W + r  sin Bo=F+ Wo (1) 

[Fz+p2+2pF sin W - r  sin Oo=F+ Wo (2) 

where F is the  focal length, W is  the electrical line length -- 
joining pairs of elements, W, is an wbitrary constant  and rand e--‘ 

p are, respectively, the lateral coordinates of elements on the 
front (aperture side) and  back  (feed side) faces. Subtracting (2) 
from ( 1 )  and squaring both  sides: +. 

F2+p2-2r2 sin2 O0=[F4+p4+2p2F2-4p2P sin2 @ 01 ~ 2 -  ,. 9 

(3) . 
.. -_ 

then  squaring  both  sides  again  and  simplifying leave‘ .b 

which  gives  the  location  of the back face elements in terms of 
those on the front face-  Next  we a d w  and (2) to find an 
expression for the line lengths: 

W = F +  wo- 1 / 2 [ ~ + ~ 2 - 2 ~ ~  sin e 0 y  
- 1 / 2 [ P + p Z + 2 p F  sin (5) 

B. Path Length Errors and  Refocusing 
Although  we are guaranteed  two perfect focal points, we are 

more interested in  how  well the lens focuses everywhere else. 
Assuming for a first approximation  that the proper focal arc is 
a circle of radius F about the center of  the lens, then the path 
length error for a  point at angle B is 
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Fig. 1. Linear two degree of freedom (2DF) lens  reference  geometry. 
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Fig. 2. Path length  errors  without  refocusing.  (a) 2DF lens with Bo = 0 
(solid) and Bo = 10” dashed. (b) Thin lens. 

Path  length errors are shown in Fig. 2(a) for 80 = 0” and BO 
= 10”. Fig. 2(b)  shows corresponding error contours for a 
one degree of freedom lens (IDF) which  uses line lengths  only 
for focusing: 

W = F +   W o - [ F + r 2 ] 1 / 2 .  (7) 

Such a lens is the  discrete-element  analog  to an optical “thin 
lens” since (8) is the same as the “thickness” function for a 
spherical thin  lens [7, p. 801, and is  equivalent to the  “constant 
thickness” lens discussed by R u e  [5 ] .  

Fig. 3. Path  length  errors with refocusing  for the 2DF linear  lens 8 = IO”, 
Normalized Aparture Coordinate. YF 

eo = 0. 

Although the magnitude of the errors in Fig. 2(a) are 
already  notably lower than Fig. 2(b), the one degree of 
freedom errors are mostly  cubic  functions of r ,  which are 
“coma” aberrations [8, p. 2121. In contrast, the  two degree of 
freedom (2DF) errors are mostly  Second-order “focusing” 
aberrations which  can  be  reduced  by “refocusing,” that  is 
moving  the  feed closer to, or farther away  from the lens  while 
maintaining  its angle with  respect to the lens  axis [9]. 

Fig. 3 shows the resulting  path  length error when a feed at 0 
= 10” is  moved closer to the lens, to a distance G, with g = 
G/F. The  values g = 0.976 and g = 0.971 were found 
(numerically) to minimize the root mean square (rms) error 
integrated over the aperture for F/D = 1 and F/D = 2, 
respectively. The ordinate is ( E / F  + 1 - g) since the 
movement  of  the  feed from F to G introduces a constant  path 
length error of (G - F ) .  This has  no  effect on the beam 
quality, and  is subtracted to give a clearer representation of  the 
important error terms. It  is apparent from the curves g = 
0.971 and g = 0.976 that the peak error is  nearly  minimized 
by forcing the error to (G - F )  at or near the aperture edge 
since for F / D  = 1 ,  r,,, = 0.5F while for F/D = 2, r,, = 
0.25F. Using  that  condition  in (6) we can  find an equation for 
the  focal surface. With 80 = 0: 

E = ( G - F ) = [ G ~ + ~ ~ - ~ ~ G  sin B]1/2+r sin 0 

- [P + p2] (8) 

Substituting r = F sin CY; p = F tan CY 

( G - F ) = [ G 2 + F 2  tan2 a-2FG tan CY sin 8]”2 

+ F  sin CY sin 8-F sec cy. (9) 

Solving for G in (9) leads to 

G 1 sin2 CY sin2 0 
F 2 (I - sec CY)(~ + sin a sin e) g(8)=-= 1 +- ; (10) 

where CY = sin-’ (rm,/F). Although (10) is valid  only for Bo 
= 0 we have  observed a sec Bo dependence in numerical 
computations  and  thus  in  general g(B, 0,) = sec Oag(8, 0). Fig. 
4 shows  the  shape  of the focal arc for a few  choices  of F/D 

Even with refocusing, the  path  length errors for this lens 
design are far greater than for an equivalent  sized  Rotman lens 

and 80. 
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Fig. 4. Optimum focal  arc  contours  for  the 2DF linear lens. 

[6].  Thus, there is no strong justification for using it as a two- 
dimensional beamformer. Its chief  advantage is in its flat 
faces, which allows a simpler design of a  three-dimensional 
beamformer for scanning  in  both  azimuth  and elevation. 

III. THREE-DIMENSIONAL LENS 

A .  Extension 
No further development is required to extend the design  to 

three dimensions. Equations (4) and (5) still apply  but r and p 
are now radial coordinates of front and  back face elements as 
shown  in Fig. 5. Instead of a linear array, the front face  is  a 
planar array whose lattice geometry is arbitrary. Each front 
face element at (rn, 9,) is connected to a  back face element at 
(pn, Qn) by a transmission line of electrical length W,, with p n  
and W, found by applying first (4), then (5). 

There are no longer two perfect  focal points-O0 instead 
corresponds to a ‘‘cone of  best focus.” As Rao points out 14, 
p. 10521 designing  a  three-dimensional lens with  more  than 
one perfect focus  inevitably destroys its symmetry  in 9. Since 
our objective is a lens that focuses well over a large sector in 
both 8 and 4, a  design  with  two  perfect focal points is 
undesirable, although  we  will  examine its properties briefly. 

B. Errors and Refocusing 
In Figs. 6 and 7(a) we show path len-4 error contours for, 

respectively, a  thin lens and  a 2DF planar lens, both  with their 
feeds moved 5 O off-axis in 8.  As in the case of a linear lens, the 
thin lens has mostly coma error while the 2DF lens has mostly 
quadratic focus error. Note also that the error contours in Fig. 
7(a) are linear, which implies that the beam  is  perfectly 
focused in the Q plane orthogonal to that containing  the  feed 
(4/ is the lens coordinate and 4 is the  feed coordinate). Had  we 
chosen eo = 8 = 5 O ,  the resulting error contours would be 
identical to Fig. 7(a), except  rotated by  90O-the beam  would 
be perfectly  focused in its own 4 plane. 

Moving the feed closer to the lens (G = 0.997F) reduces 
the error  to that shown in Fig. 7(b). This value of G yields  the 

Fig. 5. Planar lens  reference  geometry. 

Fig. 6. Path  length  error  contours in the  aperture of a thin lens  with  feed at 
5” off-axis. 

Fig. 7. Path  length  error  contours  in  the aperture of a 2DF planar lens  with 
feed at 5” off-axis. Left and right sides are,  respectively,  without and with 
refocusing. 

minimum  root  mean sq1-9; (rms) path  length error over the 
aperture. Although the maximum error is  reduced considera- 
bly, there is  no longer any  plane  in  which the beam is perfectly 
focused. Using a similar analysis to that  presented  in  Section 
II-B we  have  found that the  focal surface yielding  minimum 
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path  length error in  any  plane  of 4 is, for 00 = 0: 1 x 1 6  

G(0) = F  1 + 1/2 11 .. - Perfect F O ~ I  at e=lo96=ooa1soo 

Perfect ~ o s u s a t  e=oo - 
5x103-- _ _ _  NO Perfect FOCUS,~,=IO~ 

sin2 (Y sin2 e cos2 (dr-+j 
(1 - sec a)(1 +sin a sin B cos (6,- 4))  

Minimizing error in the plane of scan, 4, = .$, ( 1  1 )  reduces to 
(10) and the  scan  locus is the  same as in Fig. 4. However, 
from Fig. 7 we can  conclude  that the best contour on  which to 
minimize  the error is 6, - 4 = 45" and therefore 

G(8) = F  1 + 1/4  1. (12) 

C. Bifocal Planar Lens 

[ sin2 (Y sin2 0 

(1 -sec  a)(1  +sin a sin e/&) 

In order to derive the design  equations for a planar lens with 
F/D = 1 

two perfect foci, the path  length  equality  conditions are 

[ F Z + ~ Z F ~ ~ F  sin eo cos 4 , p  10 15 20 

+ W k r  sin eo cos d,=F+ W,. (13 )  
Comparing  this to ( 1 )  and  (2)  we  note  that  the  only difference 
is  that every sin Bo term is  now multiplied by cos 41, where 9, 
is the polar coordinate of a lens element. The term remains 
intact through  the derivation, resulting in the  following 
equations for p and W :  

P - r 2  sin' Bo cos2 4, 1/2 

p = r [  P - r Z  1 (14) 

W = F +  Wo- 1 /2 [P+p2-2pF sin Bo cos d ~ ] " ~  

- 1 / 2 [ P  + p 2  + 2pf sin Bo cos dl ]  (1 5 )  

A lens  that satisfies (14)  and  (15)  will  have two perfect  focal 
points  at (r , 8, 4)  = ( F ,  Bo, 0); ( F ,  Bo, 180"). 

Fig. 8 shows  the  rms  path  length error integrated over the 
lens aperture for several scan  planes in 4.  As expected, the 
error goes to zero in the principal  plane at the  angle of perfect 
focus (10" in this  case).  Also  shown  (dashed) is the corres- 
ponding error for the  &symmetric lens. It is clear from  this 
figure that a two  focal  point  design  only  improves  the  focusing 
over that part of the scan  region  within - k 35" of the 
principal plane. The poorer focusing elsewhere, particularly 
near  the lens axis is  most  likely  not  worth  the  improvement 
near  the pair of  perfect  focal points. 

D. Pattern @nthesis 
Synthesizing low-sidelobe beams  with a lens antenna 

usually requires exciting several feed  elements  at the same 
time. White [9] has shown  that  such  beams can  only  be  lossless 
if the  individual patterns of each  feed are spatially  orthogonal. 
Assuming  that a feed element provides uniform  illumination of 
the aperture it  will produce a Jl(u)/u beam ( J ,  is  the first- 
order Bessel  function)  and  orthogonality will require that  the 
beam peak  coincide  with  nulls  of  adjacent  beams. Therefore 
the feeds must be placed  at intervals of a beamwidth  along  the 
focal arc. For a scanning antenna, it would  be  convenient to 
superimpose a triangular array on the focal surface, and  scan 

Scan Angle 8 (deg.) 
Fig. 8. Root mean square  path  length  errors for 2DF planar  lens with two 

perfect foci (solid)  and  rotationally  symmetric  (dashed). All curves  include 
refocusing  for minimum rms error. 

the  beam  by switching between clusters of elements. We have 
found  that a seven-element cluster whose six outer elements 
are weighted 0.3213 relative to the center will  (without  path 
length errors) yield  peak sidelobes of - 36 dB. Fig. 9 shows 
the pattern of a 100 h diameter lens with  the  feed  scanned to 
12.5" and  refocused to G = 0.982F(F/D = 1) compared to 
the  on-axis pattern. All sidelobes are well  below - 30 dB, but 
the  main  beam  is considerably broader. This spreading is due 
not only to spherical aberration but also to incomplete aperture 
illumination: In moving  the  feed off-axis, we have  not  adjusted 
either the amplitude or the  phase  of  its  elements  ("transverse 
equalization"). Since opposite  edges of the lens are not  at  the 
same angle to the off-axis feed's boresight, the aperture taper 
is  slightly  skewed. The result is a narrower amplitude 
distribtion, and a somewhat broader beam. 

Based  on  the  results  of Fig. 9 we  conclude  that  this lens 
design is capable of  maintaining  low  sidelobes to at least 18 
beamwidths  off-axis.  Because  the lens is symmetric in 4, this 
holds for all  scan  planes. 

N. EXA;MPLE DESIGN, M~CROSTRIP LENS 
The fact  that  both our lens surfaces are planar opens up  new 

possibilities. For illustration only, we consider a lens made up 
of two microstrip patch arrays facing in opposite directions, 
with a common  ground  plane. The aperture side elements are 
uniformly  spaced  in a rectangular or triangular lattice, and the 
corresponding feed side element locations are calculated  using 
(4). The interconnection  between elements of  opposing faces, 
as  illustrated in Fig. 10, is  made  with a shorting pin through  an 
aperture in the common  ground  plane. The two microstrip 
transmission lines will  have a total electrical length  of W ,  
given by (5). This  should  result in  an  extremely  lightweight 
and inexpensive lens. 
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< 
Azimuth  Angle  (dag.) freedom, line lengths and radial displacement of back face 

elements, its off-axis focusing properties are sufficient to 
allow scanning of  a 0.7” low sidelobe beam over at  lea&  a 25” 
solid angle. Because this lens does  not require correction for 
scanning aberrations, the focal m a y  and its feed  network can 
be  relatively simple compared to array feeds for reflector 
antennas. The comparison to a  bifocal  lens  indicates  that  a lens 
does  not  necessarily  need  any perfect focal points to scan over 
wide angles. The most important feature of the two degree of 
freedom design, however, is the potential ease of fabrication. 
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