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Abstract—Given the proliferation of wireless communication
devices, the need for increased power and bandwidth efficiency
in emerging technologies is getting ever more pronounced. Two
technological trends offer new opportunities for addressing these
challenges: mm-wave systems (60-100GHz) that afford large
bandwidths, and multi-antenna (MIMO) transceivers that exploit
the spatial dimension. In particular, there has been significant
recent interest in mm-wave communication systems for high-rate
(1-100 Gb/s) communication over line-of-sight (LoS) channels.
Two competing designs dominate the state-of-the-art: i) tradi-
tional systems that employ continuous aperture “dish” antennas
and offer high power efficiency but no spatial multiplexing gain,
and ii) MIMO systems that use discrete antenna arrays for a
higher multiplexing gain but suffer from power efficiency. In
this paper, we propose a new communication architecture – con-
tinuous aperture phased MIMO – that combines the advantages
of both designs and promises very significant capacity gains,
and commensurate gains in power and bandwidth efficiency,
compared to the state-of-the-art. CAP-MIMO is based on a
hybrid analog-digital transceiver architecture that employs a
novel antenna array structure – a high-resolution discretelens
array – to enable a continuous aperture phased-MIMO operation.
We present the basic theory behind CAP-MIMO and the potential
capacity/power gains afforded by it. We also highlight potential
applications of CAP-MIMO in mm-wave communications.

I. I NTRODUCTION

The proliferation of data hungry wireless applications is
driving the demand for higher power and bandwidth efficiency
in emerging wireless transceivers. Two recent technological
trends offer synergistic opportunities for meeting the increas-
ing demands on wireless capacity: i) MIMO systems that
exploit multi-antenna arrays for simultaneously multiplexing
multiple data streams, and ii) millimeter-wave communication
systems, operating in the 60-100GHz band, that provide larger
bandwidths. A key advantage of mm-wave systems is that
they offer high-dimensional MIMO operation with relatively
compact arrays. In particular, there has been significant recent
interest in mm-wave communication systems for high-rate (1-
100 Gb/s) communication over line-of-sight (LoS) channels.
Two competing designs dominate the state-of-the-art: i) tra-
ditional systems1, which we refer to as DISH systems, that
employ continuous aperture “dish” antennas and offer high

1See, e.g., the commercial technology available from Bridgewave Commu-
nications; http://www.bridgewave.com

power efficiency but no spatial multiplexing gain, and ii)
MIMO systems that use discrete antenna arrays for a higher
multiplexing gain but suffer from power efficiency; see, e.g.,
[1], [2], [3].

This paper develops the basic theory of a new MIMO
transceiver architecture – continuous aperture phased (CAP)
MIMO – that combines the elements of MIMO, continu-
ous aperture antennas, and phased arrays for dramatically
enhanced performance. CAP-MIMO is based on ahybrid
analog-digital transceiver architecturethat employs a novel
antenna array structure –a high-resolution discrete lens array
(DLA) [4] – to enable aquasi-continuous aperturephased-
MIMO operation. The DLA-based analog-digital interface
also offers a low-complexity/low-cost alternative tohigh-
dimensionalphased arrays that employ digital beamforming
for communication but are too complex and/or expensive to
build at this time. In particular, in the context of gigabit LoS
communication links, the CAP-MIMO system combines the
attractive features of conventional state-of-the-art designs – the
power gain of DISH systems and multiplexing gain of MIMO
systems – to deliver very significant capacity gains and com-
mensurate gains in power/bandwidth efficiency. Furthermore,
the hybrid analog-digital architecture enables precise control
of spatial beams for link optimization and point-to-multipoint
operation that is not possible with existing designs.

In a high-resolution DLA, a microwave lens with an ap-
propriately designedquasi-continuous phase profileserves as
the radiating aperture that is excited by feed elements on
an associated focal surface [4]. In CAP-MIMO, appropriately
digitally processed data streams excite the feed elements on
the focal surface and signal propagation from the focal arc to
the aperture affects an analog spatial Fourier transform.

The basic mathematical framework for CAP-MIMO de-
veloped in this paper relies on a critically sampled discrete
representation of continuous aperture antennas or radiating
surfaces. The number of critical samples,n, represents the
maximum number ofanalog spatial modesthat are excitable
on the aperture. The resulting sampled system can be con-
ceptualized in two complementary but equivalent ways: i) as
an n × n MIMO system with n-element antenna arrays at
the transmitter and the receiver, or ii) as two coupledn-
element phased uniform linear arrays (ULAs). We leverage the



connection between MIMO systems and phased ULAs from
a communication perspective that was first established in [5]
and further developed in [6], [7].

The CAP-MIMO framework is applicable to a very broad
class of communication links: short-range versus long-range,
LoS versus multipath propagation, point-to-point versus net-
work links. However, our focus is on high-frequency (mm-
wave), high-rate (1-1000 Gbps) LoS links, which could either
be short-range (as in high-rate indoor applications, e.g. HDTV)
or long-range (as in wireless backhaul). In such applications,
out of then possible analog modes, onlyp � n digital modes
couple the transmitter and the receiver and can be used for
simultaneously transmittingp data streams. The CAP-MIMO
theory enables us to characterize the capacity for any such LoS
link and the DLA-based analog-digital architecture enables us
to approach the link capacity in practice with a significantly
lower complexity compared to traditional architectures based
on phased arrays that employ digital beamforming.

In the next section, we present an overview of the CAP-
MIMO system for LoS links with one-dimensional (1D) linear
apertures and highlight its advantages over the two state-
of-the-art designs: i) conventional DISH systems, and ii)
conventional MIMO systems. The basic CAP-MIMO theory
for 1D apertures is developed in Sections III-V, extension to
2D apertures is discussed in Sec. VI, representative numerical
capacity comparisons are provided in Sec. VII, and details
of the DLA-based realization of CAP-MIMO transceivers is
discussed in Sec. VIII.

II. OVERVIEW OF CAP-MIMO

Fig. 1 depicts a 1D LoS link in which the transmitter and
receiver antennas have a linear aperture of lengthA and are
separated by a distanceR. Throughout, we assume thatA �
R. Let λc = c/fc denote the wavelength of operation, where
c is the speed of light andfc is the carrier frequency. For
fc ∈ [60, 100]GHz, λc ∈ [3, 5]mm.
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Fig. 1. The LoS channel.

For a given LoS link characterized by the physical param-
eters (A,R, λc), as in Fig. 1, the CAP-MIMO framework
addresses the following fundamental question:What is the
link capacity at any operating signal-to-noise ratio (SNR)?
The CAP-MIMO theory is aimed at characterizing this fun-
damental limit and the DLA-based realization of the CAP-
MIMO system is aimed at approaching this limit in practice.
As elaborated in this paper, the DISH and MIMO designs are
sub-optimum special cases of the CAP-MIMO framework.

Sec. II-A introduces the concept of analog versus digital
modes that play a key role in the CAP-MIMO framework.

Sec. II-B introduces the DLA-based hybrid analog-digital
architecture of a CAP-MIMO system for efficiently accessing
the information carrying digital modes viaanalog spatial
beamforming. The complexity of the analog-digital interface of
a DLA-based CAP-MIMO system is compared to conventional
approaches based on phased-arrays that usedigital beamform-
ing. Approximate closed-form expressions for capacity are
presented in Sec. II-C. Sec. II-D introduces the concept of
beamwidth agility for realizing different configurations of a
CAP-MIMO system that afford robustness in mobile links.

A. Analog versus Digital Spatial Modes

From a communication perspective, the continuous aper-
ture antennas at the transmitter and the receiver can be
equivalently represented by critically sampled (virtual)n-
dimensional ULAs with antenna spacingd = λc/2, where
n ≈ 2A/λc is a fundamental quantity associated with a linear
aperture antenna (electrical length). In other words, the analog
spatial signals transmitted or received by the antennas belong
to ann-dimensional signal space. We termn as themaximum
number of independentanalog (spatial) modessupported by
the antennas. Thesen spatial modes can be associated with
n orthogonal spatial beams that cover the entire (one-sided)
spatial horizon (−π/2 ≤ φ ≤ π/2 in Fig. 1) as illustrated
in Fig. 2(a). However, due to the finite antenna apertureA,
and large distanceR � A between the transmitter and the
receiver, only a small number of modes/beams,pmax � n,
couple from the transmitter to the receiver, and vice versa,as
illustrated in Fig. 2(b). We termpmax as themaximum number
of independentdigital (spatial) modessupported by the LoS
link. The number of digital modes,pmax, is a fundamental
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Fig. 2. CAP-MIMO beampatterns:n = 40, pmax = 4. (a) Then = 40

orthogonal beams covering the entire spatial horizon. (b) The pmax = 4

orthogonal beams that couple the finite aperture antennas.

quantity related to the LoSlink and can be calculated as
pmax ≈ A2/(Rλc). In other words, the information bearing
signals in the LoS link lie in apmax-dimensional subspace of
then-dimensional signal space associated with the antennas.

B. DLA-based Hybrid Analog-Digital Architecture

Fig. 3 shows a (baseband) schematic of a DLA-based hybrid
analog-digital architecture for realizing a CAP-MIMO system.
At the transmitter the architecture enables direct access to p
digital modes,1 ≤ p ≤ pmax, denoted by the input signals
xe(i), i = 1, · · · , p. Any space-time coding technique can
be used for encoding information into thep digital inputs



Fig. 3. The hybrid analog-digital architecture of a CAP-MIMO system.

{xe(i)}. These digital signals are then mapped inton feed
signals, xa(i), i = 1, · · · , n, on the focal surface of the
DLA, via the n × p digital transformUe. Different values
of p represent the different CAP-MIMO configurations (See
Sec. II-C and Sec. II-D). Forp = pmax, Ue reduces to the
identity transform. Forp < pmax, Ue effectively maps the
digital signals to the focal arc so thatp data streams are
mapped ontop beams with wider beamwidths (see Sec. VIII).

The analog transformUa represents theanalog spatial
transformbetween the focal surface and the continuous radi-
ating aperture of the DLA. This continuous Fourier transform
is affected by the wave propagation between the focal surface
and the aperture of the DLA. However, this continuous Fourier
transform can be accurately approximately by ann×n discrete
Fourier transform (DFT) matrixUa (see (14)) corresponding
to critical sampling of the aperture and the focal arc (surface in
2D). The analog signals on the DLA aperture are represented
by their critically sampled versionx(i), i = 1, · · · , n in Fig. 3.

The DLA-based CAP-MIMO transceiver architecture pro-
vides the lowest-complexity analog-digital interface forac-
cessing thepmax digital modes in a LoS link. To see this,
it is instructive to compare the CAP-MIMO transmitter with
a comparable transmitter based on ann-element phased array.
In a phased-array, the continuous transmitter aperture in Fig. 1
is replaced with ann-element phased array, where each
element is associated with its own RF chain, including an
D/A converter and an up-converter. In a phased-array, the
pmax digital modes can be accessed viadigital beamforming
- each digital mode/beam is associated with ann-dimensional
phase profile across the entiren-element phased array. As
a result, alln elements of the phased array are involved in
encoding the symbol into a corresponding spatial beam via
digital beamforming. Thus, the D/A interface of a phased
array-based system isn-dimensional or has complexityn.

In a DLA-based CAP-MIMO transmitter, thepmax digi-
tal modes are accessed viaanalog beamforming. While not
shown, the D/A conversion, including up-conversion to the
passband atfc, is done at the output ofUe. That is, the D/A
interface is betweenUe andUa in Fig. 3. As elaborated in
Sec. VIII, even though the digital transformUe is n × p for
general operation, only on the order ofpmax � n outputs are
non-zero or active and as a result a corresponding number of
feed elements (represented by{xa(i)} in Fig. 3) are active on
the focal surface of the DLA. Thus, the the D/A interface in a
DLA-based CAP-MIMO system has a complexity on the order
of pmax, rather than the ordern complexity in a phased-array.

The receiver also uses a DLA-based architecture to map
the analog spatial signals on the DLA aperture to signals in
beamspace vian sensors appropriately placed on the focal

surface. A subset ofn signals on the focal surface of the
receiver DLA is then down-converted and converted into
baseband digital signals via an A/D. (The complexity of this
A/D interface is again on the order ofpmax � n, rather
thann as in a conventional phased-array-based system.) The
digital signals are then appropriately processed, using any of
a variety of well-known algorithms, to recover an estimate,
x̂e(i), i = 1, · · · , p, of the transmitted digital signals.

C. Capacity Comparison

In this section, we present idealized closed-form expressions
that provide accurate approximations for the capacity of the
CAP-MIMO, DISH and MIMO systems for a 1D LoS link
depicted in Fig. 1. The rationale behind these closed-form
approximations is presented in Sec. IV.

1) Conventional MIMO System:Our starting point is the
conventional MIMO system that uses a ULA withpmax

antennas -pmax also reflects the maximum multiplexing gain
or the maximum number ofdigital modessupported by the
system. The required antenna spacing (Rayleigh spacing) to
createpmax orthogonal spatial modes is given by

dray =

√

Rλc

pmax

(1)

and the corresponding aperture is given by

A = pmaxdray (2)

Ignoring path loss, and assuming omnidirectional antennas, the
capacity of the conventional MIMO system is given by

Cmimo = pmax log(1 + ρσ2
c/p

2
max) = pmax log(1 + ρ) (3)

whereρ denotes the total transmitSNR (signal-to-noise ratio)
andσ2

c = p2max is the total channel power (captured byp2max

transmit and receive omnidirectional antenna pairs). If higher
gain antennas are used, the capacity expression (3) can be
modified by replacing it with a higher effectiveρ.

2) Conventional DISH System:For a given aperture,A,
defined in (2), the maximum number ofanalog modes, n, is
the number of Nyquist samples, spaced byd = λc/2

A = nd = n
λc

2
⇐⇒ n =

2A

λc

. (4)

resulting in ann × n (virtual) MIMO system. The DISH
system has a higher total channel powerσ2

c = n2 due to
the continuous aperture which, in an ideal setting, is equally
distributed between thepmax digital modes. Since the DISH
system transmits a single data stream, its capacity can be
accurately approximated as

Cdish ≈ log

(

1 +
ρσ2

c

pmax

)

= log

(

1 +
ρn2

pmax

)

(5)



3) CAP-MIMO System:The CAP-MIMO system combines
the attractive features of DISH (high channel power - antenna
gain) with those of MIMO (multiplexing gain). Furthermore,
CAP-MIMO system has the agility to adapt the number of data
streams,p, 1 ≤ p ≤ pmax. The capacity of the CAP-MIMO
system for anyp can be accurately approximated as

Cc−mimo(ρ) ≈ p log

(

1 +
ρσ2

c

ppmax

)

= p log

(

1 +
ρn2

ppmax

)

(6)
whereσ2

c = n2 as in the DISH system. We focus on three
CAP-MIMO configurations:

• Multiplexing (MUX) configuration – p = pmax – that
yields the highest capacity.

• Intermediate (INT) configuration – p ≈ √
pmax – that

yields medium capacity.
• Beamforming (BF) configuration – p = 1 – that yields

the lowest capacity, equal to that of the DISH system.
Fig. 4(a) shows the capacities of different systems along

with the three CAP-MIMO configurations. The figure corre-
sponds to a short-range (R = 3m) link with linear aperture
A = 16cm operating atfc = 80 GHz with pmax = 4 and
n = 85. As evident, between the two conventional systems,
MIMO dominates at high SNRs whereas DISH dominates
at low SNRs. CAP-MIMO on the other hand, exceeds the
performance of both conventional systems over the entire SNR
range. Fig. 4(b) compares DISH, MIMO and CAP-MIMO
MUX configuration for a long-range (R = 1km) 60GHz link
with linear apertureA = 3.35m, pmax = 4 and n = 1342.
The performance gains of CAP-MIMO over DISH and MIMO
are even more pronounced in this case.

−30 −20 −10 0 10 20 30 40 50 60

10
1

10
2

SNR (dB)

C
ap

ac
ity

 (
bi

ts
/s

/H
z)

 

 

DISH (= CAP−MIMO−BF)
MIMO
CAP−MIMO−MUX
CAP−MIMO−INT

−60 −40 −20 0 20 40 60

10
1

10
2

SNR (dB)

C
ap

ac
ity

 (
bi

ts
/s

/H
z)

 

 

DISH (= CAP−MIMO−BF)
MIMO
CAP−MIMO−MUX
CAP−MIMO−INT

(a) Short-range link (b) Long-range link

Fig. 4. Capacity comparison for: (a) a short-range (R = 3m) 1D link at 80
GHz, (b) long-range (R = 1km) 1D link at 60 GHz.

D. CAP-MIMO Configurations: Beam Agility

As noted above, the CAP-MIMO system can achieve a
multiplexing gain of p ∈ {1, · · · , pmax} corresponding to
different configurations. Lower values ofp are advantageous
in applications involving mobile links. This is because of
the beam agility capability of the CAP-MIMO system: for
p < pmax, by appropriately reconfiguring the digital transform
Ue, thep data streams can be encoded intop beams withwider
beamwidths. The use of wider beamwidths relaxes the channel
tracking requirements.

Fig. 5 illustrates the notion of beam agility for a 1D system
with n = 40 andpmax = 4. Fig. 5(a) shows the beampatterns

for the MUX configuration for whichp = pmax = 4 and
4 narrow beams couple with the receiver aperture. Fig. 5(b)
shows the beampatterns for an INT configuration withp = 2.
In this case 2 beams are used but the beamwidth is twice
the beamwidth in the MUX configuration. Fig. 5(c) shows the
beampatterns for the BF configuration withp = 1. In this
case, a single data stream is encoded into a single beam with
the largest beamwidth - 4 times the beamwidth in the MUX
configuration. The BF configuration represents an optimized
conventional DISH system.
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Fig. 5. CAP-MIMO Beampatterns for the three configurations for n = 40

andpmax = 4. (a) MUX p = 4. (b) INT p = 2, (c) BF p = 1.

III. SYSTEM MODEL

In this section, we develop a common framework for
developing the basic theory of CAP-MIMO and comparing it
with the two conventional designs: continuous-aperture DISH
designs, and conventional MIMO designs. Our emphasis is
on mm-wave systems in LoS channels. We first develop our
framework for one-dimensional (1D) linear arrays and then
comment on two-dimensional (2D) arrays in Sec. VI. It is
insightful to view the LoS link in Fig. 1 from two perspectives:
as a sampled MIMO system and as two coupled phased arrays.
This connection between MIMO systems and phased arrays
was first established in [5].

A. The LoS Channel: MIMO meets Phased Arrays

Fig. 1 depicts the LoS channel in the 1D setting. The
transmitter and receiver consist of a continuous linear aperture
of length A and are separated by a distanceR � A.
The center of the receiver array serves as the coordinate
reference: the receiver array is described by the set of points
{(x, y) : x = 0,−A/2 ≤ y ≤ A/2} and the transmitter array
is described by{(x, y) : x = R,−A/2 ≤ y ≤ A/2}. While
the LoS link can be analyzed using a continuous representation
[6], in this paper we focus on a critically sampled system
description, with spacingd = λc/2, that results in no loss
of information and provides a convenient finite-dimensional
system description for developing our framework [5].

For a given spacingd, the point-to-point LoS link in Fig. 1
can be described by ann× n MIMO system

r = Hx+w (7)

wherex ∈ Cn is the transmitted signal,r ∈ Cn is the received
signal,w ∼ CN (0, I) is the AWGN noise vector,H is the



n× n channel matrix, and the system dimension is given by

n =

⌊

A

d

⌋

. (8)

For critical spacingd = λc/2, n ≈ 2A/λc which represents
the maximum number of independent spatial (analog) modes
excitable on the array apertures.

The fundamental performance limits of the LoS link are
governed by (the eigenvalues of) the channel matrixH. In this
paper, we will consider beamspace representation ofH [5].
Furthermore, we will be dealing with discrete representations
of signals both in the spatial and beamspace domains. We use
the following convention for the set of (symmetric) indicesfor
describing a discrete signal of lengthn

I(n) = {i− (n− 1)/2 : i = 0, · · · , n− 1} . (9)

It is convenient to use thespatial frequency(or normalized
angle)θ that is related toφ as [5]

θ =
d

λc

sin(φ) . (10)

The beamspace channel representation is based onn-
dimensional array response/steering (column) vectors,an(θ),
that represent a plane wave associated with a point source in
the directionθ. The elements ofan(θ) are given by

an,i(θ) = e−j2πθi , i ∈ I(n) (11)

Note thata(θ) are periodic inθ with period 1 and

a
H
n (θ′)an(θ) =

∑

i∈I(n)

an,i(θ)a
∗
n,i(θ

′) =
∑

i∈I(n)

e−j2π(θ−θ′)n

=
sin(πn(θ − θ′))

sin(π(θ − θ′))
, fn(θ − θ′) (12)

wherefn(θ) is the Dirichlet sinc function, with a maximum
of n at θ = 0, and zeros at multiples of∆θo where

∆θo =
1

n
≈ d

A
⇐⇒ ∆φo ≈ λc

d
∆θo =

λc

A
(13)

which is a measure of thespatial resolutionor thewidth of a
beamassociated with ann-element phased array.

Then-dimensional signal spaces, associated with the trans-
mitter and receiver in ann×n MIMO system, can be described
in terms of then orthogonal spatial beams represented by
appropriately chosen steering/response vectorsan(θ) defined
in (11). For ann-element ULA, withn = A/d, an orthogonal
basis for theCn can be generated by uniformly sampling
θ ∈ [−1/2, 1/2] with spacing∆θo [5]. That is,

Un =
1√
n
[an(θi)]i∈I(n) , θi = i∆θo =

i

n
= i

d

A
(14)

is an orthogonal (DFT) matrix withUH
n Un = UnU

H
n = I.

For critical spacing,d = λc/2, the orthogonal beams corre-
sponding to the columns ofUn, cover the entire range for
physical anglesφ ∈ [−π/2, π/2].

For developing the beamspace channel representation we
note in Fig. 1 that a pointy on the transmitter array repre-
sents a plane wave impinging on the receiver array from the
directionφ ≈ sin(φ) with the correspondingθ given by (10)

sin(φ) =
y

√

R2 + y2
≈ y

R
⇐⇒ θ =

dy

λcR
(15)

Using (15), we get the following correspondence between
the sampled points on the transmitter array and the angles
subtended at the receiver array

yi = id ⇐⇒ θi = i
d2

Rλc

, i ∈ I(n) (16)

which for critical samplingd = λc/2 reduces to

yi = i
λc

2
⇐⇒ θi = i

λc

4R
, i ∈ I(n). (17)

Finally, the n columns of matrixH are given by a(θ)
corresponding to theθi in (17); that is,

H = [an(θi)]i∈I(n) , θi = i∆θch = i
λc

4R
. (18)

We define the total channel power as

σ2
c = tr(HH

H) = n2 . (19)

B. Channel Rank: Coupled Orthogonal Beams

For the LoS link in Fig. 1, the link capacity is directly
related to the rank ofH which is in turn related to the number
of orthogonal beams from the transmitter that lie within the
aperture of the receiver array, which we will refer to as the
maximum number of digital modes, pmax. Fig. 2(a) shows
the far-field beampatterns corresponding to then orthogonal
beams defined in (14) forn = 40 that cover the entire spatial
horizon. Of these beams, onlypmax = 4 couple to the receiver
array with a limited aperture, as illustrated in Fig. 2(b). The
numberpmax can be calculated as

pmax =
2θmax

∆θo
= 2θmaxn = 2θmax

A

d
≈ A2

Rλc

(20)

whereθmax = 0.5 sin(φmax) denotes the(normalized) angu-
lar spreadsubtended by the receiver array at the transmitter;
we have used (10) and (15), noting thatsin(φmax) ≈ A

2R ,
whereφmax denotes the physical (one-sided) angular spread
subtended by the receiver array at the transmitter.

We note thatpmax in (20) is a fundamental link quantity
that is independent of the antenna spacing used. For the
conventional DISH system and the CAP-MIMO system we use
d = λc/2. A conventional MIMO system, on the other hand,
usespmax antennas with spacingdray; pluggingA = pmaxd
in (20) leads to the required (Rayleigh) spacingdray in (1).
The maximum number of digital modes,pmax, defined in (20)
is a baseline indicator of the rank of the channel matrixH. The
actual rank depends on the number of dominant eigenvalues
of HH

H as discussed in Sec. V.



C. CAP-MIMO versus MIMO Beampatterns: Grating Lobes

Fig. 6 illustrates a key difference in the beampatterns of a
CAP-MIMO system and a MIMO system. Fig. 6(a) illustrates
two of the pmax = 4 orthogonal beams that couple with the
receiver in a CAP-MIMO system withn = 40. Fig. 6(b)
illustrates the same two beams corresponding to a MIMO
system withpmax antennas with spacingdray. As evident,
each beam exhibitsnc = n/pmax = 10 peaks – one of which
lies within the receiver aperture while the remaining9 (grating
lobes) do not couple to the receiver.2 These grating lobes result
in overall channel power loss proportional ton2

c compared to
the CAP-MIMO system. The grating lobes also result in a loss
of security and increased interference.
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Fig. 6. CAP-MIMO versus MIMO beampatterns:n = 40, pmax = 4. (a)
CAP-MIMO beampatterns for two of thepmax beams that couple with the
receiver. (b) MIMO beampatterns for the same two beams – the grating lobes
associated with each beam result in loss of channel power.

IV. I DEALIZED CAPACITY ANALYSIS: ARRAY GAIN ,
CHANNEL POWER, DIGITAL MODES

We now outline the derivation of idealized capacity expres-
sions in Sec. II-C. Consider a LoS with a givenn andpmax. It
is well-known in antenna theory that the array/beamforming
gain of a linear array of apertureA is proportional ton =
A/(λc/2). This gain is achieved at the both the transmitter
and receiver ends. However, for a givenpmax, while the entire
array aperture is exploited at the transmitter side for each
beam, only a fraction1/pmax of the aperture is associated
with a beam on the receiver side (see Fig. 2). As a result,
the total transmit-receiver array/beamforming gain associated
with each beam or digital mode isn2/pmax. In the ideal
setting, the transmit covariance matrixHH

H haspmax non-
zero eigenvalues, each of sizen2/pmax, corresponding to the
total channel power ofσ2

c = n2. Distributing the total transmit
SNR, ρ, equally over thesepmax eigenmodes gives the CAP-
MIMO capacity formula in (6) forp = pmax.

The CAP-MIMO capacity formula applies for allp =
1, 2, · · · , pmax. In particular, for p = 1, the CAP-MIMO
capacity gives the maximum capacity for the (optimized)
DISH system in which the link characteristics are adjusted
so thatpmax = 1. If pmax > 1, then the capacity of a DISH
system can be bounded as

log

(

1 +
ρn2

pmax

)

≤ Cdish = log(1 + ρλmax) ≤ log(1 + ρn2)

(21)

2We note thatdray ≈ ngλc/2.

whereλmax is the largest eigenvalue ofHH
H and satisfies

n2/pmax = σ2
c/pmax ≤ λmax ≤ σ2

c = n2. The capacity
expression in (5) corresponds to the lower bound in (21).

The MIMO system usespmax antennas with spacingdray
given in (1). As a result the channel power isp2max which,
along with total transmit power, is equally distributed within
thepmax eigenmodes resulting in the capacity expression (3).

V. EXACT CAPACITY ANALYSIS

We now outline exact capacity analysis of the CAP-MIMO
system that refines the approximate/idealized capacity ex-
pressions in Sec. II-C. The capacity expression (3) for the
MIMO system is exact. We consider a static point-to-point
LoS channel for which the critically sampled channel matrix
H in (18) is deterministic and we assume that it is completely
known at the transmitter and the receiver. In this case, it is
well-known that the capacity-achieving input is Gaussian and
is characterized by the eigenvalue decomposition of then×n
transmit covariance matrix [8], [9]

ΣT = H
H
H = VΛV

H (22)

where V is the matrix of eigenvectors andΛ =
diag(λ1, · · · , λn) is the diagonal matrix of eigenvalues with
∑

i λi = σ2
c = n2. In particular, the capacity-achieving

input vectorx in (7) is characterized asCN (0,VΛsV
H)

where Λs = diag(ρ1, · · · , ρn) is the diagonal matrix of
eigenvalues of the input covariance matrixE[xxH ] with
tr(Λs) =

∑

i ρi = ρ. The capacity of the critically sampled
LoS link is then given by

C(ρ) = max
Λs:tr(Λs)=ρ

log |I+ΛΛs| = max
ρi:

∑
i ρi=ρ

n
∑

i=1

log(1+λiρi)

(23)
As discussed earlier, out of then possible communication
modes, we expect onlypmax modes/beams to couple to the
receiver array. However, the value ofpmax in (20) provides
only an approximate baseline value for the actual channel rank
for a given(A,R, λc). In numerical results, we replacepmax

with the effective channel rank,peff , which we estimate as
the number of dominant eigenvalues ofΣT - eigenvalues that
are above a certain fractionγ ∈ (0, 1) of λmax:

peff = |{i : λi ≥ γλmax}| (24)

and approximate the system capacity as

C(ρ) ≈ max
ρi:

∑peff
i

ρi=ρ

peff
∑

i=1

log(1 + λiρi)

≥
peff
∑

i=1

log

(

1 + λi

ρ

peff

)

(25)

where the last inequality corresponds to equal power allocation
to all thepeff modes. As we discuss in our numerical results,
the effective channel rank,peff , is somewhere in the range

peff ∈ [dpmaxe, dpmax + 1e] . (26)
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Fig. 7. Capacity versusSNR comparison between the CAP-MIMO, DISH
and MIMO systems for a long-range link;R = 1km. (a) 1D linear aperture
with A = 1.58m. (b) 2D square aperture.

VI. T WO-DIMENSIONAL ARRAYS

We now outline the system model for 2D square apertures.
Consider a LoS link in which both the transmitter and the
receiver antennas, separated by a distance ofR meters, consist
of square apertures of dimensionA × A m2. The maximum
number of analog and digital modes are simply the squares
of the linear counterparts:n2d = n2 , pmax,2d = p2max. The
resulting MIMO system is characterized by then2d × n2d

matrixH2d that can be shown to be related to the 1D channel
matrix H in (18) via H2d = H ⊗ H, where ⊗ denotes
the kronecker product [10]. The eigenvalue decomposition of
the transmit covariance matrix is similarly related to its 1D
counterpart in (22):ΣT,2d = H

H
2dH2d = V2dΛ2dV

H
2d and

V2d = V ⊗ V , Λ2d = Λ ⊗ Λ. The channel power is also
the square of the 1D channel power:σ2

c,2d = n2
2d = n4 = σ4

c .
With these correspondences, the idealized capacity expressions
in Sec. II and the exact capacity analysis in Sec. V can be used.

VII. N UMERICAL RESULTS

We now present numerical results to illustrate the
capacity/SNR advantage of the CAP-MIMO system over
conventional DISH and MIMO systems. Fig. 7 compares the
three systems for a long range link,R = 1km, atfc = 60GHz.
Fig. 7(a) compares linear apertures withA = dray = 1.58m
corresponding ton = 632 and pmax = 2. Fig. 7(b) presents
the comparison for a corresponding 2D array with a square
aperture of1.58 × 1.58m2, with n2d = n2 = 399424 and
pmax,2d = p2max = 4. Two dominant eigenvalues are used in
the 1D system (γ = .01) and 4 in the 2D system (γ = .001).
In the 2D case, we also include the capacity of a MIMO
system with30dB-gain directional antennas. Fig. 8 compares
the three systems for a short-range (indoor) link,R = 3m,
at fc = 80GHz. Fig. 8(a) compares linear apertures with
A = dray = 7.5cm corresponding ton = 40 andpmax = 2.
Fig. 8(b) presents the comparison for a corresponding 2D array
with a square aperture of7.5× 7.5cm2, with n2d = 1600 and
pmax,2d = 4. Two dominant eigenvalues are used in the 1D
system (γ = .01) and 4 in the 2D system (γ = .001).

Interestingly, in both above examples, the condition num-
bers,χ = λmax/λmin, for the subset of eigenvalues used,
areχ1d = 14 andχ2d = 216. Even though the channel can
support up topeff = 2 modes for linear arrays,pmax = 0.5,
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Fig. 8. Capacity versusSNR comparison between the CAP-MIMO, DISH
and MIMO systems for a short-range link;R = 3m. (a) 1D linear aperture
with A = 7.5cm. (b) 2D square aperture.

as calculated according to (20), emphasizing the fact that (20)
is a baseline estimate (see the range forpeff in (26)). The
numerical results correspond to first determiningdray and then
using the minimum apertureA = (pmax − 1)dray.

As evident from the above results, there is close agree-
ment between the exact and approximate capacity estimates.
Furthermore, the CAP-MIMO system exhibits very significant
SNR gains over the MIMO and DISH systems at high spectral
efficiencies (> 20 bits/s/Hz); about20dB for linear apertures
and more than40dB for square apertures.

VIII. D ETAILS OF THE CAP-MIMO TRANSCEIVER

Fig. 3 shows a schematic of a DLA-based realization of a
CAP-MIMO system. In this section, we provide details on the
CAP-MIMO transmitter for 1D apertures.

The analog transformUa represents the analog spatial
Fourier transform between the focal surface and the continuous
aperture of the DLA, that is affected by the wave propagation
between the focal arc and the aperture. However, we can ac-
curately approximate this continuous Fourier transform byan
n× n discrete Fourier transform (DFT) matrix corresponding
to critical sampling of the aperture and the focal arc:

Ua(`,m) =
1√
n
e−j 2π`m

n , ` ∈ I(n) , m ∈ I(n) (27)

where` represents samples on the aperture (spatial domain)
andm represents samples on the focal arc (beamspace).

The CAP-MIMO architecture is based on a high-resolution
DLA to approximate a continuous-aperture phased-MIMO op-
eration. Fig. 9 provides a comparison between a double convex
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Fig. 9. Comparison between a dielectric lens (a), a traditional microwave
lens composed of arrays of receiving and transmitting antennas (b), and the
proposed conformal metamaterial-based microwave DLA composed of sub-
wavelength periodic structures (c).



dielectric lens, a conventional microwave lens composed ofar-
rays of receiving and transmitting antennas connected through
transmission lines with variables lengths (see, e.g., [11], [12],
[13], [14], [15], and a high-resolution DLA that we plan to use
in this work [4]. The high-resolution DLA is composed of a
number of spatial phase shifting elements, or pixels, distributed
on a flexible membrane. The local transfer function of the
pixels can be tailored to convert the electric field distribution
of an incident electromagnetic (EM) wave at the lens’ input
aperture to a desired electric field distribution at the output
aperture. These high-resolution DLAs have several unique ad-
vantages over conventional antenna-based microwave lenses,
including: 1) The pixels are ultra-thin and their dimensions
can be extremely small, e.g.0.05λc × 0.05λc as opposed to
λc/2 × λc/2 in conventional DLAs [4]. This offers a higher
resolution in designing the aperture phase profile; 2) Due to
the small pixel sizes, high-resolution DLAs have large field
of views of ±70◦; and 3) Unlike conventional microwave
lenses, high-resolution DLAs can operate over extremely wide
bandwidths with fractional bandwidths exceeding50%.

The n× p digital transformUe represents mapping of the
p, 1 ≤ p ≤ pmax, digital signals onto the focal arc (surface
in 2D), which is represented byn samples. Different values
of p represent the different CAP-MIMO configurations. For
p = pmax, Ue reduces topmax × pmax identity transform;
that is, thepmax inputs are directly mapped to corresponding
pmax feeds on the focal arc. Forp < pmax, Ue effectively
maps the independent digital signals to the focal arc so thatp
data streams are mapped ontop beams with wider beamwidths.
Wider beamwidths, in turn, are attained via excitation of part
of the aperture. An explicit construction ofUe is given next.

For a givenp define theoversampling factorasnos(p) =
pmax/p , p = 1, · · · , pmax. The p digital streams are
mapped intop beams that are generated by a reduced aperture
A(p) = A/nos with na(p) = n/nos = np/pmax Nyquist sam-
ples. The resulting (reduced) beamspace resolution is given
by ∆θ(p) = 1/na(p) = (1/n)(pmax/p) = ∆θonos(p), where
∆θo = 1/n is the (highest, finest) spatial resolution afforded
by the full aperture. The reduced resolution corresponds toa
larger beamwidth for each beam.

Then×p digital transformUe consists of two components:
Ue = U2U1. The na(p) × p transformU1 represents the
beamspace to aperture mapping for thep digital signals
corresponding to an aperture withna(p) (Nyquist) samples:

U1(`,m) =
1

√

na(p)
e−j 2π`m

na(p) =

√

nos

n
e−j

2π`mnos
n , (28)

where` ∈ I (na(p)) , m ∈ I(p). Then× na(p) matrix U2

represents an oversampled - by a factornos - IDFT (inverse
DFT) of thena(p) dimensional signal at the output ofU1:

U2(`,m) =
1√
n
ej

2π`m
n , ` ∈ I(n) , m ∈ I(na(p)) (29)

For a givenn, pmax, and p, the n × p composite digital

transform,Ue, can be expressed as

Ue(`,m) = (U2U1)(`,m) =
∑

i∈I(na(p))

U2(`, i)U1(i,m)

=
1√
nos

1

na

∑

i∈I(na)

ej2π(
`−mnos

nos
) i
na

=
1√

nosna

fna

(

1

na

(

`

nos

−m

))

, (30)

wherefn(·) is defined in (12),̀ ∈ I(n) represent the samples
of the focal arc of DLA andm ∈ I(p) represent the index for
the digital data streams. Note that forp = pmax, Ue reduces
to a pmax × pmax identity matrix. Even forp < pmax, only a
subset, on the order ofpmax, of the outputs ofUe are active,
which can be estimated from (30).

The columns ofUe serve as approximate transmit eigen-
functions. Transmission on exact eigenmodes can be accom-
plished by including ap × p preprocessing matrixUred

which is the matrix of eigenvectors ofHH
redHred where

Hred = HUaUe is the n × p reduced dimensional channel
matrix. That is,Ue → UeUred.
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