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Abstract—Given the proliferation of wireless communication
devices, the need for increased power and bandwidth efficiency
in emerging technologies is getting ever more pronounced. Two
technological trends offer new opportunities for addressing these
challenges: mm-wave systems (60-100GHz) that afford large
bandwidths, and multi-antenna (MIMO) transceivers that exploit
the spatial dimension. In particular, there has been significant
recent interest in mm-wave communication systems for high-rate
(1-100 Gb/s) communication over line-of-sight (LoS) channels.
Two competing designs dominate the state-of-the-art: i) tradi-
tional systems that employ continuous aperture ”dish” antennas
that offer high power efficiency but no spatial multiplexing
gain, and ii) MIMO systems that use discrete antenna arrays
to offer a higher multiplexing gain but suffer from power
efficiency. In this paper, we propose a new communication ar-
chitecture – continuous aperture phased MIMO – that combines
the advantages of both designs and promises very significant
capacity gains, and commensurate gains in power and bandwidth
efficiency, compared to the state-of-the-art. CAP-MIMO is based
on a hybrid analog-digital transceiver architecture that employs
a novel antenna array structure – a high resolution discrete
lens array – to enable a continuous-aperture phased-MIMO
operation. We will present the basic theory behind CAP-MIMO
and the potential capacity/power gains afforded by it. We will
also highlight potential applications of CAP-MIMO in mm-wave
communications.

I. I NTRODUCTION

The proliferation of data hungry wireless applications is
driving the demand for higher power and bandwidth efficiency
in emerging wireless transceivers. Two recent technological
trends offer synergistic opportunities for meeting the increas-
ing demands on wireless capacity: i) MIMO systems that
exploit multi-antenna arrays for higher capacity by simultane-
ously multiplexing multiple data streams, and ii) millimeter-
wave communication systems, operating in the 60-100GHz
band that provide larger bandwidths. A key advantage of mm-
wave systems, and very-high frequency systems in general,
is that they offer high-dimensional MIMO operation with
relatively compact array sizes. In particular, there has been
significant recent interest in mm-wave communication systems
for high-rate (1-100 Gb/s) communication over line-of-sight
(LoS) channels. Two competing designs dominate the state-of-

the-art: i) traditional systems1 that employ continuous aperture
“dish” antennas and offer high power efficiency but no spatial
multiplexing gain, and ii) MIMO systems that use discrete
antenna arrays to offer a higher multiplexing gain but suffer
from power efficiency; see, e.g., [1], [2], [3].

This paper develops the basic theory of a new MIMO
transceiver architecture – continuous aperture phased (CAP)
MIMO – that combines the elements of MIMO, continuous
aperture antennas, and phased arrays for dramatically en-
hanced performance. CAP-MIMO is based on ahybrid analog-
digital transceiver architecturethat employs a novel antenna
array structure –a high resolution discrete lens array (DLA)
– to enable aquasi continuous aperturephased-MIMO opera-
tion. The DLA-based analog-digital interface also offers alow-
complexity/low-cost alternative tohigh-dimensionalphased
arrays that employ digital beamforming for communication
but are too complex and/or expensive to build at this time.
In particular, in the context of gigabit LoS communication
links, the CAP-MIMO system combines the attractive features
of conventional state-of-the-art designs – the power gain of
DISH systems and multiplexing gain of MIMO systems – to
deliver very significant capacity gains and commensurate gains
in power and bandwidth efficiency. Furthermore, the hybrid
analog-digital architecture enables precise control of spatial
beams for link optimization and point-to-multipoint network
operation that is not possible with existing designs.

In a high-resolution DLA, a microwave lens with an ap-
propriately designedquasi-continuous phase profileserves as
the (continuous) radiating aperture that is excited by feedel-
ements on an associated focal surface. Appropriately digitally
processed data streams excite the feed elements on the focal
surface whereas the signal propagation from the focal arc to
the aperture of the DLA affects an analog spatial Fourier
transform.

The basic mathematical framework for CAP-MIMO systems
developed in this paper relies on a critically sampled discrete
representation of continuous aperture antennas or radiating sur-
faces. The number of critical samples,n, represents the maxi-

1See, e.g., the commercial technology available from Bridgewave Commu-
nications; http://www.bridgewave.com



mum number ofanalog spatial modesthat are excitable on the
aperture. The resulting sampled system can be conceptualized
in two complementary but equivalent ways: i) as ann × n
MIMO system withn-element antenna arrays at the transmitter
and the receiver, or ii) as two coupledn-element phased
uniform linear arrays (ULAs). In developing the basic CAP-
MIMO theory, we leverage the connection between MIMO
systems and phased ULAs from a communication perspective,
that was first established in [4] and further developed in [5],
[6].

The basic CAP-MIMO theory is applicable to a very broad
class of communication links: short-range versus long-range,
LoS versus multipath propagation, point-to-point versus net-
work links. However, our focus is on high-frequency (mm-
wave), high-rate (1-100 Gigabit/sec) LoS links, which could
either be short-range (as in high-rate indoor applications,
e.g. HDTV) or long-range (as in wireless backhaul). In such
applications, out of then possible analog modes, onlyp � n
digital modescouple the transmitter and the receiver and can
be used for simultaneously transmittingp data streams. The
CAP-MIMO theory enables us to characterize the capacity
(maximum reliable rate) for any such LoS link and the DLA-
based analog-digital architecture enables us to approach the
link capacity in practice with a significantly lower complexity
compared to traditional phased arrays that employ digital
beamforming.

In the next section, we present an overview of the CAP-
MIMO system for LoS links with one-dimensional (1D) linear
apertures and highlight its advantages over the two state-of-
the-art competing designs : i) Conventional DISH systems that
employ continuous aperture “dish” antennas, and ii) Conven-
tional MIMO systems that use discrete multi-antenna arrays.
The basic CAP-MIMO theory for 1D apertures is developed
in Sections III-V, extension to 2D apertures is discussed in
Sec. VI, representative numerical capacity comparisons are
provided in Sec. VII, and details of the DLA-based realization
of CAP-MIMO transceivers is discussed in Sec. VIII.

II. OVERVIEW OF CAP-MIMO

Fig. 1 depicts a 1D LoS link in which the transmitter and
receiver antennas have a linear aperture of lengthA and are
separated by a distanceR. Throughout, we assume thatA �
R. Let λc = c/fc denote the wavelength of operation, where
c is the speed of light andfc is the carrier frequency. For
fc ∈ [60, 100]GHz, λc ∈ [3, 5]mm.
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Fig. 1. The LoS channel.

For a given LoS link characterized by the physical param-
eters (A,R, λc), as in Fig. 1, the CAP-MIMO framework

addresses the following fundamental question:What is the
link capacity at any operating signal-to-noise ratio (SNR)?
The CAP-MIMO theory is aimed at characterizing this fun-
damental limit and the DLA-based realization of the CAP-
MIMO system is aimed at approaching this limit in practice.
As elaborated in this paper, the two conventional designs,
DISH and MIMO, are sub-optimum special cases of the CAP-
MIMO framework.

The novel features of the CAP-MIMO transceiver architec-
ture compared to state-of-art, include:

• The CAP-MIMO theory, that draws on insights, concepts
and tools from MIMO communication theory, signal
processing, and theory of phased arrays, enables us to
accurately estimate the capacity of an inherently analog
LoS link defined by continuous aperture antennas. (see
Sec. II-D, Sec. IV and Sec. V).

• The CAP-MIMO system combines the attractive features
of conventional state-of-the-art designs for LoS links –
the power gain of DISH systems and multiplexing gain
of MIMO systems – to deliver very significant capacity
gains and commensurate gains in power and bandwidth
efficiency. (see Sec. II-D, Sec. V and Sec. VII).

• The DLA-based realization of a CAP-MIMO system (see
Sec. VIII) is based on new insights provided by the CAP-
MIMO theory to approach the fundamental capacity of
an LoS link in practice. In particular, the novel hybrid
analog-digital architecture of a CAP-MIMO system en-
ables high resolution analog beamforming and provides
a significantly lower complexity analog-digital interface
compared to traditional phased array-based architectures
that employ digital beamforming (see Sec. II-C).

• The high resolution DLA-based hybrid analog-digital
architecture enables precise control of spatial beams
for robust operation in mobile scenarios and point-to-
multipoint operation in network scenarios that is not
possible with existing designs. (see Sec. II-E).

• While lens arrays have been used for directional signaling
and beam steering, and provide an architecture for analog
beamforming rather than digital beamforming in phased
arrays [7], [8], [9], [10], [11], [12], [13], [14], capacity-
approaching signaling and precise beam agility, afforded
by the hybrid analog-digital CAP-MIMO architecture and
enabled by a high-resolution DLA [15], is not possible
with traditional lens arrays or high-resolution DLAs
alone.

Sec. II-A introduces the concept of analog versus digital
modes that play a key role in the CAP-MIMO framework.
Sec. II-B introduces the DLA-based hybrid analog-digital
architecture of a CAP-MIMO system for efficiently accessing
the information carrying digital modes viaanalog spatial
beamforming. Sec. II-C compares the complexity of the
analog-digital interface of a DLA-based CAP-MIMO system
to traditional approaches based on phased-arrays that use
digital beamforming. Approximate closed-form expressions
for capacity are presented in Sec. II-D. (The accuracy of the



closed-form expressions is assessed with exact capacity analy-
sis in Sec. V.) Sec. II-E introduces the concept of beamwidth
agility for realizing different configurations of a CAP-MIMO
system that afford robustness in applications involving mobile
links.

A. Analog versus Digital Spatial Modes

To address the fundamental question of capacity, it is
insightful to view the LoS link from two complementary
but equivalent perspectives (see Sec. III): as a critically
sampled MIMO system and as two coupled phased arrays
[4], [5]. From a communication perspective, the continuous
aperture antennas at the transmitter and the receiver can be
equivalently represented by critically sampled (virtual)n-
dimensional ULAs with antenna spacingd = λc/2, where
n ≈ 2A/λc is a fundamental quantity associated with a linear
aperture antenna (electrical length). In other words, the analog
spatial signals transmitted or received by the linear aperture
antennas belong to ann-dimensional signal space. We term
n as themaximum number of independentanalog (spatial)
modessupported by the antennas. Thesen spatial modes can,
in turn be associated withn orthogonal spatial beams that
cover the entire (one-sided) spatial horizon (−π/2 ≤ φ ≤ π/2
in Fig. 1) as illustrated in Fig. 2(a). However, due to the
finite antenna apertureA, and large distanceR � A between
the transmitter and the receiver, only a small number of
modes/beams,pmax � n, couple from the transmitter to the
receiver, and vice versa, as illustrated in Fig. 2(b). We term
pmax as themaximum number of independentdigital (spatial)
modes supported by the LoS link. The number of digital
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Fig. 2. CAP-MIMO beampatterns:n = 40, pmax = 4. (a) Then =

40 orthogonal beams covering the entire spatial horizon. (b) The pmax =

4 orthogonal beams that couple the finite-aperture transmitter and receiver
antennas.

modes,pmax, is a fundamental quantity related to the LoS
link and can be calculated aspmax ≈ A2/(Rλc) (see (21)).
The pmax digital modes supported by the LoS link carry the
information bearing signals from the transmitter to the receiver
and govern the link capacity. In other words, the information
bearing signals in the LoS link lie in apmax-dimensional
subspace of then-dimensional spatial signal space associated
with the antennas.

B. DLA-based Hybrid Analog-Digital Architecture

Fig. 3 shows a (baseband) schematic of a DLA-based
hybrid analog-digital architecture for realizing a CAP-MIMO

Fig. 3. The hybrid analog-digital architecture of a CAP-MIMO system. The
analog operation of the DLA is represented by the transformUa.

system. At the transmitter the architecture enables directaccess
to the p digital modes,1 ≤ p ≤ pmax, denoted by the
input signalsxe(i), i = 1, · · · , p. A variety of well-known
approaches, collectively called space-time coding techniques,
can be used for encoding information into thep digital
inputs {xe(i)}. In the simplest case - spatial multiplexing
[16] - xe(i), i = 1, · · · , p representp independent digital data
streams. These independent digital signals are then mapped
into n feed signals,xa(i), i = 1, · · · , n, on the focal surface
of the DLA, via the digital transformUe. While not shown, the
D/A conversion, including up-conversion to the passband atfc
is done at the output ofUe. (As noted next, the complexity
of this D/A interface is on the order ofpmax � n, rather than
n in a conventional phased-array-based implementation.) The
analog (up converted) signals on the focal surface of the DLA
excite then analog spatial modes on the continuous radiating
aperture of the DLA, via the analog transformUa. The analog
signals on the DLA aperture are represented by their critically
sampled versionx(i), i = 1, · · · , n in Fig. 3.

We focus on the transmitter structure – the receiver also
uses a DLA-based architecture to map the analog spatial
signals on the DLA aperture to signals in beamspace via
n sensors appropriately placed on the the focal surface. A
subset ofn signals on the focal surface of the receiver DLA
is then down-converted and converted into baseband digital
signals via an A/D. (The complexity of this A/D interface,
as in the case of the transmitter, is again on the order of
pmax � n, rather thann as in a conventional phased-array-
based design using digital beamforming.) The digital signals
are then appropriately processed, using any of a variety of
well-known algorithms (e.g. maximum likelihood) to recover
an estimate,̂xe(i), i = 1, · · · , p, of the transmitted digital
signals. The nature of decoding/estimation algorithms at the
receiver is dictated by the nature of digital encoding at the
transmitter.

The transmitter is represented by two transforms: the digital
transformUe maps p digital symbols (corresponding top
data streams) ton analogsymbols that exciten feeds on the
focal arc of the DLA. The number of data streamsp can be
anywhere in the range from 1 topmax.

The analog transformUa represents theanalog spatial
transformbetween the focal surface and the continuous radi-
ating aperture of the DLA. This continuous Fourier transform
is affected by the wave propagation between the focal surface
and the aperture of the DLA. However, consistent with the
critical sampling of the aperture outlined in Sec. II-A, this
continuous Fourier transform can be accurately approximately



by ann×n discrete Fourier transform (DFT) matrixUa (see
(15)) corresponding to critical sampling of the aperture and
the focal arc (surface in 2D).

Then× p digital transform matrixUe represents mapping
of the p, 1 ≤ p ≤ pmax, independent digital signals onto
the focal surface of the DLA, which is represented byn
samples. Different values ofp represent the different CAP-
MIMO configurations (See Sec. II-D and Sec. II-E). For
p = pmax, the digital component is the identity transform. For
p < pmax, the digital transform effectively maps the digital
signals to the focal arc so thatp data streams are mapped
onto p beams with wider beamwidths. Wider beamwidths, in
turn, are attained via excitation of part of the aperture. (see
Sec. VIII).

C. Analog-Digital Interface Complexity: CAP-MIMO versus
Phased Arrays

The DLA-based CAP-MIMO transceiver architecture pro-
vides the lowest-complexity analog-digital interface forac-
cessing thepmax digital modes in a LoS link. To see this,
it is instructive to compare the CAP-MIMO transmitter with
a comparable transmitter based on ann-element phased array.

To think in terms of a phased array, imagine that the continu-
ous transmitter aperture in Fig. 1 is replaced with ann-element
phased array, where each element is associated with its own
RF chain, including an D/A converter and an up-converter.
In a phased-array, thepmax digital modes can be accessed
via digital beamforming- each digital symbol, corresponding
to a particular digital mode/beam is associated with ann-
dimensional phase profile across the entiren-element phased
array (the phase profile corresponds to a particular column of
then×n DFT matrixUa (see (15)). As a result, while only a
small numberpmax � n of digital symbols are simultaneously
transmitted (spatial multiplexing), alln elements of the phased
array are involved in encoding the symbol into a corresponding
spatial beam via digital beamforming. Thus, the D/A interface
of a phased array-based system isn-dimensional or has
complexityn - n independent RF chains, each with its own
D/A and up-converter, are needed.

In a DLA-based CAP-MIMO transmitter, thepmax digital
modes are accessed viaanalog beamforming: each digital
symbol (represented by an output of the digital transformUe),
corresponding to a particular digital mode/beam, is associated
with a corresponding feed-element on the focal surface of the
DLA. Thus, even though the digital transformUa is n×p for
general operation, only on the order ofpmax � n outputs are
non-zero or active and as a result a corresponding number of
feed elements (represented by{xa(i)} in Fig. 3) are active on
the focal surface of the DLA. As mentioned above, the D/A
interface in a CAP-MIMO system is between the output of
the digital transformUe and the input of the analog transform
Ua. Thus, the the D/A interface in a DLA-based CAP-MIMO
system has a complexity on the order ofpmax, rather than
the ordern complexity in a phased-array – only on the order
or pmax � n independent RF chains, each with its on D/A
an up-converter, are needed. Whenp = pmax, corresponding

to the multiplexing (MUX) configuration of the CAP-MIMO
system, the D/A complexity is exactlypmax. Whenp < pmax,
the complexity is a little higher thanpmax (to realize robust
beams with wider beamwidths), but still much smaller thann.
(see Sec. VIII)

D. Capacity Comparison

In this section, we present idealized closed-form expressions
that provide accurate approximations for the capacity of the
CAP-MIMO system and the two competing state-of-the-art de-
signs, DISH and MIMO systems, for a 1D LoS link depicted in
Fig. 1. The rationale behind these closed-form approximations
is presented in Sec. IV.

1) Conventional MIMO System:Our starting point is the
conventional MIMO system that uses a ULA withpmax

antennas -pmax also reflects the maximum multiplexing gain
or the maximum number ofdigital modessupported by the
system. The required antenna spacing (Rayleigh spacing) to
createpmax orthogonal spatial modes between the transmitter
and the receiver is given by

dray =

√

Rλc

pmax

(1)

and the corresponding aperture is given by

A = pmaxdray (2)

Ignoring path loss, and assuming omnidirectional antennas, the
capacity of the conventional MIMO system is given by

Cmimo = pmax log(1 + ρσ2
c/p

2
max) = pmax log(1 + ρ) (3)

whereρ denotes the total transmitSNR (signal-to-noise ratio)
andσ2

c = p2max is the total channel power (captured byp2max

transmit and receive omnidirectional antenna pairs). If higher
gain antennas are used, the capacity expression (3) can be
modified by replacing with a higher effectiveρ reflecting the
antenna gains.

2) Conventional DISH System:For a given aperture,A,
defined in (2), the maximum number ofanalog modes, n, is
the number of Nyquist samples, spaced byd = λc/2, that we
can pack within the aperture

A = nd = n
λc

2
⇐⇒ n =

2A

λc

. (4)

In practice, n can be taken asbnc. For the purposes of
our comparison, we will approximate the continuous aperture
DISH system with a corresponding MIMO system equipped
with an n-element ULA at critical spacingd = λc/2. The
DISH system has a higher total channel powerσ2

c = n2 due
to the continuous aperture which, in an ideal setting, is equally
distributed between thepmax digital modes supported by the
LoS link. Thus, since the DISH system transmits a single data
stream compared withpmax streams in the MIMO system, the
capacity of the DISH system can be accurately approximated
as

Cdish ≈ log

(

1 +
ρσ2

c

pmax

)

= log

(

1 +
ρn2

pmax

)

(5)



3) CAP-MIMO System:The CAP-MIMO system combines
the attractive features of DISH (high channel power - antenna
gain) with those of MIMO (multiplexing gain). Furthermore,
CAP-MIMO system has the agility to adapt the number of
data streams,p, 1 ≤ p ≤ pmax. The capacity of the CAP-
MIMO system for anyp ∈ {1, 2, · · · , pmax} can be accurately
approximated as

Cc−mimo(p) ≈ p log

(

1 +
ρσ2

c

ppmax

)

= p log

(

1 +
ρn2

ppmax

)

(6)
whereσ2

c = n2 as in the DISH system. We focus on three
CAP-MIMO configurations:

• Multiplexing (MUX) configuration – p = pmax – that
yields the highest capacity.

• Intermediate (INT) configuration – p =
√
pmax – that

yields medium capacity.
• Beamforming (BF) configuration – p = 1 – that yields

the lowest capacity, equal to that of the DISH system.
Fig. 4 shows the capacities of different systems along with

the three CAP-MIMO configurations. The BF configuration
coincides with the DISH configuration. The figure corresponds
to a linear array with apertureA = .43m, link length of
R = 2.75m, operating atfc = 10 GHz with pmax = 4
and n = 29. As evident from the figure, between the two
conventional systems, MIMO dominates at high SNRs whereas
DISH dominates at low SNRs. CAP-MIMO on the other hand,
exceeds the performance of both conventional systems over the
entire SNR range.

Fig. 5 compares DISH, MIMO and CAP-MIMO MUX
configuration for a 60GHz link withAp = 3.35m, R = 1km,
pmax = 4 and n = 1342. The performance gains of CAP-
MIMO over DISH and MIMO are even more pronounced in
this case.
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Fig. 4. Capacity comparison at 10 GHz

E. CAP-MIMO Configurations: Beam Agility

As noted above, for a givenpmax, the CAP-MIMO system
can achieve a multiplexing gain ofp wherep can take on any
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Fig. 5. Capacity comparison at 60 GHz

value between1 and pmax corresponding to different CAP-
MIMO configurations. The number of spatial beams used for
communication is equal top. While the highest capacity is
achieved forpmax, lower values ofp are advantageous in
applications involving mobile links in which the transmitter
and/or the receiver are moving. This is because of the beam
agility capacity of the CAP-MIMO system: forp < pmax, by
appropriately reconfiguring the digital transformUe, thep data
streams can be encoded intop beams withwider beamswidths
which still cover the entire aperture of the receiver array.
The use of wider beamwidths relaxes the channel estimation
requirements in the CAP-MIMO system.

Fig. 6 illustrates the notion of beam agility for a sys-
tem using linear apertures withn = 40 and pmax = 4.
Fig. 6(a) shows the beampatterns for the MUX configuration
for which p = pmax = 4 – 4 narrow beams couple with
the receiver aperture. Fig. 6(b) shows the beampatterns for
an INT configuration withp = 2. In this case 2 beams
are used for simultaneously transmitting 2 independent data
streams but the beamwidth is twice the beamwidth in the
MUX configuration. As a result the 2 beams still cover the
entire receiver aperture. Fig. 6(c) shows the beampatterns
for the BF configuration withp = 1. In this case a single
data stream is encoded into a single beam with the largest
beamwidth - 4 times the beamwidth in the MUX configuration.
The BF configuration can be thought of as the CAP-MIMO
configuration that represents an optimized conventional DISH
system - the capacity of a conventional DISH system cannot
exceed the capacity of the BF configuration in a CAP-MIMO
system. We note that forp < pmax wider beamwidths are
achieved via reconfigured versions of the digital transform
Ue that correspond to illuminating a smaller fraction of the
DLA aperture. This, in turn, requires excitation of a few more
thanpmax elements on the focal surface of the DLA thereby
slightly increasing the A/D complexity of the CAP-MIMO
system (see Sec. VIII for details).

Fig. 7 illustrates the point-to-multipoint capability of a
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Fig. 6. CAP-MIMO Beampatterns for the three configurations for n = 40

andpmax = 4. (a) MUX p = 4. (b) INT p = 2, (c) BF p = 1.

CAP-MIMO system in which a single CAP-MIMO transmit-
ter simultaneously transmits toK = 4 spatially distributed
receivers in a network setting. In the illustrationn = 40 and
pmax = 4 for each individual link. Thus,pmax = 4 data
streams are simultaneously transmitted to each receiver, via
the corresponding beams, resulting in a total ofpmaxK = 16
streams/beams. We note that in practicen � pmax and as a
result for relatively small values ofK, pmaxK � n and the
complexity of the D/A interface is still much smaller than a
traditional phased-array based system.
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Fig. 7. CAP-MIMO beampatterns for enabling point-to-multipoint operation
in the MUX configuration;n = 40 andpmax = 4.

III. SYSTEM MODEL

In this section, we develop a common framework for
developing the basic theory of CAP-MIMO and comparing it
with the two conventional designs: continuous-aperture DISH
designs, and conventional MIMO designs. Our emphasis is
on mm-wave systems in LoS channels. We first develop our
framework for one-dimensional (1D) linear arrays and then
comment on two-dimensional (2D) arrays in Sec. VI. It is
insightful to view the LoS link in Fig. 1 from two perspectives:
as a sampled MIMO system and as two coupled phased arrays.
This connection between MIMO systems and phased arrays
was first established in [4].

A. The LoS Channel: MIMO meets Phased Arrays

Fig. 1 depicts the LoS channel in the 1D setting. The
transmitter and receiver consist of a continuous linear aperture
of length A and are separated by a distanceR � A.
The center of the receiver array serves as the coordinate
reference: the receiver array is described by the set of points
{(x, y) : x = 0,−A/2 ≤ y ≤ A/2} and the transmitter array
is described by{(x, y) : x = R,−A/2 ≤ y ≤ A/2}. While
the LoS link can be analyzed using a continuous representation
[5], in this paper we focus on a critically sampled system
description, with spacingd = λc/2, that results in no loss
of information and provides a convenient finite-dimensional
system description for developing our framework [4].

For a given sample spacingd, the point-to-point commu-
nication link in Fig. 1 can be described by ann × n MIMO
system

r = Hx+w (7)

wherex ∈ Cn is the transmitted signal,r ∈ Cn is the received
signal,w ∼ CN (0, I) is the AWGN noise vector,H is the
n×n channel matrix, and the dimension of the system is given
by

n =

⌊

A

d

⌋

. (8)

For critical spacingd = λc/2, n ≈ 2A/λc which represents
the maximum number of independent spatial (analog) modes
excitable on the array apertures.

The fundamental performance limits of the LoS link are
governed by (the eigenvalues of) the channel matrixH. In this
paper, we will consider beamspace representation ofH [4].
Furthermore, we will be dealing with discrete representations
of signals both in the spatial and beamspace domains. We use
the following convention for the set of (symmetric) indicesfor
describing a discrete signal of lengthn

I(n) = {i− (n− 1)/2 : i = 0, · · · , n− 1} (9)

which corresponds to an integer sequence passing through0
for n odd and non-integer sequence that does not pass through
0 whenn is even. It is convenient to use thespatial frequency
(or normalized angle)θ that is related to the physical angleφ
as [4]

θ =
d

λc

sin(φ) . (10)

The beamspace channel representation is based onn-
dimensional array response/steering (column) vectors,an(θ),
that represent a plane wave associated with a point source in
the directionθ. The elements ofan(θ) are given by

an,i(θ) = e−j2πθi , i ∈ I(n) (11)

(12)

Note thata(θ) are periodic inθ with period 1 and

a
H
n (θ′)an(θ) =

∑

i∈I(n)

an,i(θ)a
∗
n,i(θ

′) =
∑

i∈I(n)

e−j2π(θ−θ′)n

=
sin(πn(θ − θ′))

sin(π(θ − θ′))
, fn(θ − θ′) (13)



wherefn(θ) is the Dirichlet sinc function, with a maximum
of n at θ = 0, and zeros at multiples of∆θo where

∆θo =
1

n
≈ d

A
⇐⇒ ∆φo ≈ λc

d
∆θo =

λc

A
(14)

which is a measure of thespatial resolutionor thewidth of a
beamassociated with ann-element phased array.

Then-dimensional signal spaces, associated with the trans-
mitter and receiver arrays in ann × n MIMO system, can
be described in terms of then orthogonal spatial beams
represented by appropriately chosen steering/response vectors
an(θ) defined in (12). For ann-element ULA, withn = A/d,
an orthogonal basis for theCn can be generated by uniformly
sampling the principal periodθ ∈ [−1/2, 1/2] with spacing
∆θo [4]. That is,

Un =
1√
n
[an(θi)]i∈I(n) , θi = i∆θo =

i

n
= i

d

A
(15)

is an orthogonal (DFT) matrix withUH
n Un = UnU

H
n = I.

For critical spacing,d = λc/2, the orthogonal beams corre-
sponding to the columns ofUn, cover the entire range for
physical anglesφ ∈ [−π/2, π/2].

For developing the beamspace channel representation, we
need to relate the beam directionθ at the receiver to points
on the transmitter aperture. As illustrated in Fig. 1, a point
y on the transmitter array represents a plane wave impinging
on the receiver array from the directionφ ≈ sin(φ) with the
correspondingθ given by (10)

sin(φ) =
y

√

R2 + y2
≈ y

R
⇐⇒ θ =

dy

λcR
(16)

Using (16), we note the following correspondence between the
sampled points on the transmitter array and the corresponding
angles subtended at the receiver array

yi = id ⇐⇒ θi = i
d2

Rλc

, i ∈ I(n) (17)

which for critical samplingd = λc/2 reduces to

yi = i
λc

2
⇐⇒ θi = i

λc

4R
, i ∈ I(n). (18)

Finally, the n columns of matrixH are given by a(θ)
corresponding to theθi in (18); that is,

H = [an(θi)]i∈I(n) , θi = i∆θch = i
λc

4R
. (19)

We define the total channel power as

σ2
c = tr(HH

H) = n2 . (20)

B. Channel Rank: Coupled Orthogonal Beams

For the LoS link in Fig. 1, the link capacity is directly
related to the rank ofH which is in turn related to the number
of orthogonal beams from the transmitter that lie within the
aperture of the receiver array, which we will refer to as the
maximum number of digital modes, pmax. Fig. 2(a) shows
the far-field beampatterns corresponding to then orthogonal
beams defined in (15) forn = 40 that cover the entire spatial

horizon. Of these beams, onlypmax = 4 couple to the receiver
array with a limited aperture, as illustrated in Fig. 2(b). The
numberpmax can be calculated as

pmax =
2θmax

∆θo
= 2θmaxn = 2θmax

A

d
≈ A2

Rλc

(21)

where θmax denotes the(normalized) angular spreadsub-
tended by the receiver array at the transmitter; we have used
(10) and (16), noting thatsin(φmax) ≈ A

2R , where φmax

denotes the physical (one-sided) angular spread subtendedby
the receiver array at the transmitter.

We note thatpmax in (21) is a fundamental link quantity
that is independent of the antenna spacing used. For the
conventional DISH system and the CAP-MIMO system we use
d = λc/2. A conventional MIMO system, on the other hand,
usespmax antennas with spacingdray; pluggingA = pmaxd
in (21) leads to the required (Rayleigh) spacingdray in (1).
The maximum number of digital modes,pmax, defined in (21)
is a baseline indicator of the rank of the channel matrixH. The
actual rank depends on the number of dominant eigenvalues
of HH

H as discussed in Sec. V.

C. CAP-MIMO versus MIMO Beampatterns: Grating Lobes

Fig. 8 illustrates a key difference in the beampatterns of a
CAP-MIMO system and conventional MIMO system. Fig. 8(a)
illustrates two of thepmax = 4 orthogonal beams that couple
with the receiver in a CAP-MIMO system withn = 40.
Fig. 8(b) illustrates the same two beams corresponding to
a MIMO system withpmax antennas with spacingdray. As
evident, each beam exhibitsng = n/pmax = 10 peaks – one
of which lies within the receiver aperture while the remaining
9 (grating lobes) do not couple to the receiver.2 These grating
lobes result in overall channel power loss proportional ton2

g

compared to the CAP-MIMO system. The grating lobes also
result in a loss of security and interference compared to CAP-
MIMO system.
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Fig. 8. CAP-MIMO versus MIMO beampatterns:n = 40, pmax = 4. (a)
CAP-MIMO beampatterns for two of thepmax beams that couple with the
receiver. (b) MIMO beampatterns for the same two beams – the grating lobes
associated with each beam result in loss of channel power andalso lead to
interference and loss of security.

IV. I DEALIZED CAPACITY ANALYSIS: ARRAY GAIN ,
CHANNEL POWER, DIGITAL MODES

In this section, we outline the derivation of idealized capac-
ity expressions in Sec. II-D. Consider a LoS with a given

2We note thatdray ≈ ngλc/2.



n and pmax. It is well-known in antenna theory that the
array/beamforming gain of a linear array of apertureA is pro-
portional ton = A/(λc/2). This gain is achieved at the both
the transmitter and receiver ends. However, for a givenpmax,
while the entire array aperture is exploited at the transmitter
side for each beam, only a fraction1/pmax of the aperture
is associated with a beam on the receiver side (see Fig. 2).
As a result, the total transmit-receiver array/beamforming gain
associated with each beam or digital mode isn2/pmax. In the
ideal setting, the transmit covariance matrixH

H
H haspmax

non-zero eigenvalues, each of sizen2/pmax, corresponding
to the total channel power ofσ2

c = n2. Distributing the total
transmit (SNR), ρ, equally over thesepmax eigenmodes gives
the CAP-MIMO capacity formula in (6) forp = pmax.

The CAP-MIMO capacity formula applies for allp =
1, 2, · · · , pmax. In particular, for p = 1, the CAP-MIMO
capacity gives the maximum capacity for the (optimized)
DISH system in which the link characteristics are adjusted
so thatpmax = 1. If pmax > 1, then the capacity of a DISH
system which uses only a single transmission mode can be
bounded as

log

(

1 +
ρn2

pmax

)

≤ Cdish = log(1 + ρλmax) ≤ log(1 + ρn2)

(22)
whereλmax is the largest eigenvalue ofHH

H and satisfies
n2/pmax = σ2

c/pmax ≤ λmax ≤ σ2
c = n2. The optimized

capacity of the DISH system in (5) in fact corresponds to the
lower bound in (22).

The conventional MIMO system usespmax antennas with
spacingdray given in (1). As a result the channel power is
p2max which, along with total transmit power, is equally dis-
tributed within thepmax eigenmodes resulting in the capacity
expression (3); that is, each of thepmax eigenvalues ofHH

H

is of size1 in this case.
Another way to arrive at this idealized expression for the

capacity of the conventional MIMO system is that in this case
the transmit array gain ispmax (rather thann) and there is
no receive gain (since each beam is exactly focussed on a
distinct receive antenna). As a result the total transmit-receive
array gain associated with each beam ispmax and the total
transmit power associated with each mode isρ/pmax. Yet
another way of thinking of the power loss in the conventional
MIMO system compared to CAP-MIMO is that each of the
pmax beams in a MIMO system hasng = n/pmax grating
lobes and as a result on a fraction1/ng of the maximum
n-fold array/beamforming gain is achievable in the critically
sampled conventional MIMO system.

V. EXACT CAPACITY ANALYSIS

In this section, we outline exact capacity analysis of the
CAP-MIMO system that refines the approximate/idealized
capacity expressions in Sec. II-D for the CAP-MIMO and
DISH systems. The capacity expression for the MIMO system
in (3) is exact.

We consider a static point-to-point LoS channel for which
the critically sampled channel matrixH in (19) is deterministic

and we assume that is completely known at the transmitter
and the receiver. In this case, it is well-known that the
capacity-achieving input is Gaussian and is characterizedby
the eigenvalue decomposition of then×n transmit covariance
matrix [16]

ΣT = H
H
H = VΛV

H (23)

where V is the matrix of eigenvectors andΛ =
diag(λ1, · · · , λn) is the diagonal matrix of eigenvalues with
∑

i λi = σ2
c = n2. In particular, the capacity-achieving

input vectorx in (7) is characterized asCN (0,VΛsV
H)

where Λs = diag(ρ1, · · · , ρn) is the diagonal matrix of
eigenvalues of the input covariance matrixE[xxH ] with
tr(Λs) =

∑

i ρi = ρ. The capacity of the critically sampled
LoS link is then given by

C(ρ) = max
Λs:tr(Λs)=ρ

log |I+ΛΛs|

= max
ρi:

∑
i ρi=ρ

n
∑

i=1

log(1 + λiρi) (24)

As discussed earlier, out of then possible communication
modes, we expect onlypmax modes/beams to couple to the
receiver array. However, the value ofpmax in (21) provides
only an approximate baseline value for the actual channel rank
for a given(A,R, λc). In numerical results, we will replace
pmax with the effective channel rank,peff , which we estimate
as the number of dominant eigenvalues ofΣT - eigenvalues
that are above a certain fractionγ ∈ (0, 1) of λmax:

peff = |{i : λi ≥ γλmax}| (25)

Using peff . the system capacity can be accurately approxi-
mated as

C(ρ) ≈ max
ρi:

∑peff
i

ρi=ρ

peff
∑

i=1

log(1 + λiρi)

≥
peff
∑

i=1

log

(

1 + λi

ρ

peff

)

(26)

where the last inequality corresponds to equal power allocation
to all thepeff modes. As we discuss in our numerical results,
the effective channel rank,peff , is somewhere in the range

peff ∈ [dpmaxe, dpmax + 1e] . (27)

VI. T WO-DIMENSIONAL ARRAYS

We now outline the system model for 2D square apertures.
Consider a LoS link in which both the transmitter and the
receiver antennas, separated by a distance ofR meters, consist
of square apertures of dimensionA × A m2. The maximum
number of analog and digital modes are simply the squares of
the linear counterparts:

n2d = n2 , n ≈ 2A/λc (28)

pmax,2d = p2max , pmax ≈ A2

Rλc

. (29)



The resulting MIMO system is characterized by then2d×n2d

matrixH2d that can be shown to be related to the 1D channel
matrix H in (19) via

H2d = H⊗H (30)

where⊗ denotes the kronecker product [17]. The eigenvalue
decomposition of the transmit covariance matrix is similarly
related to its 1D counterpart in (23)

ΣT,2d = H
H
2dH2d = V2dΛ2dV

H
2d

V2d = V ⊗V , Λ2d = Λ⊗Λ . (31)

The channel power is also the square of the 1D channel power:
σ2
c,2d = n2

2d = n4 = σ4
c . With these correspondences, the

idealized capacity expressions in Sec. II and the exact capacity
analysis in Sec. V can be used.

VII. N UMERICAL RESULTS

In this section, we present some representative numerical
results to illustrate the capacity/SNR advantage of the CAP-
MIMO system over conventional DISH and MIMO systems.

Fig. 9 compares the three systems for a long range link,R =
1km, atfc = 60GHz. Fig. 9(a) compares linear apertures with
A = dray = 1.58m corresponding ton = 632 andpmax = 2.
Fig. 9(b) presents the comparison for a corresponding 2D array
with a square aperture of1.58 × 1.58m2, with n2d = n2 =
399424 andpmax,2d = p2max = 4. Two dominant eigenvalues
are used in the 1D system (γ = .01) and 4 in the 2D system
(γ = .001). In the 2D comparison, we also include the capacity
of a conventional MIMO system with directional antennas that
provide a30dB gain.

Fig. 10 compares the three systems for a short-range (in-
door) link, R = 3m, at fc = 80GHz. Fig. 10(a) compares
linear apertures withA = dray = 7.5cm corresponding to
n = 40 and pmax = 2. Fig. 10(b) presents the comparison
for a corresponding 2D array with a square aperture of
7.5 × 7.5cm2, with n2d = 1600 and pmax,2d = 4. Two
dominant eigenvalues are used in the 1D system (γ = .01)
and 4 in the 2D system (γ = .001).

Interestingly, in both above examples, the condition num-
bers,χ = λmax/λmin, for the subset of eigenvalues used in
capacity calculations areχ1d = 14 and χ2d = 216. Even
though the channel can support up topeff = 2 modes for
linear arrays,pmax = 0.5, as calculated according to (21),
emphasizing the fact that (21) is a baseline estimate (see the
range forpeff in (27)). The numerical results correspond to
first determiningdray corresponding to a givenpmax and then
calculating the array dimension asA = (pmax−1)dray (rather
thanA = pmaxdray).

As evident from the above results, there is close agree-
ment between the exact and approximate capacity estimates.
Furthermore, the CAP-MIMO system exhibits very significant
SNR gains over the MIMO and DISH systems at high spectral
efficiencies (> 20 bits/s/Hz); about20dB for linear apertures
and more than40dB for square apertures.
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Fig. 9. Capacity versusSNR comparison between the CAP-MIMO, DISH
and MIMO systems for a long-range link;R = 1km. (a) 1D linear aperture
with A = 1.58m. (b) 2D square aperture.

VIII. D ETAILS OF THE CAP-MIMO TRANSCEIVER

Fig. 3 shows a schematic of a DLA-based realization of a
CAP-MIMO system. In this section, we provide details on the
CAP-MIMO transceiver for 1D apertures. In Sec. VIII-A, we
outline the simplest form for the transmitter architecturefor
accessing thepmax digital modes in a LoS link in terms of
the analog transformUa and the digital transformUd. The
basic architecture is based on DFTs and corresponds to directly
mapping thep, 1 ≤ p ≤ pmax, digital streams into correspond-
ing orthogonal spatial beams. In Sec. VIII-B, outline a more
advanced transmitter architecture that corresponds to exact
capacity analysis in Sec. V and corresponding to accessing
the pmax digital modes in terms ofpmax spatial eigenmodes
of the LoS channel. The analog transformUa, representing the
DLA, does not change but the nature of the digital transform
Ue is different in this case. The Fourier spatial modes, in
terms of orthogonal spatial beams, in the basic architecture
in Sec. VIII-A, represent approximations of the spatial eigen-
modes in Sec. VIII-B. In Sec. VIII-C, we outline details of
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Fig. 10. Capacity versusSNR comparison between the CAP-MIMO, DISH
and MIMO systems for a short-range link;R = 3m. (a) 1D linear aperture
with A = 7.5cm. (b) 2D square aperture.

the corresponding DLA-based receiver architecture. In Sec. IX
we discuss extensions of the CAP-MIMO system for non-
identical transmit/receive antennas as well as for multipath
propagation environments. Sec. X provides some additional
details relating to a practical implementation of the overall
CAP-MIMO system.

A. Basic Transmitter Architecture

The transmitter consists of two transforms. The digital
transformUe maps thep independentdigital symbols (cor-
responding top simultaneous data streams) inton analog
symbols that exciten feeds on the focal surface of the DLA.
The analog transformUa represents the DLA that maps then
analog signals on the focal surface of the DLA to the spatial
signals radiated by the DLA aperture. Further details on the
two transforms for the simplest architecture are provided in
the following subsections.

1) The Analog TransformUa: The analog transformUa

represents the analog spatial transform between the focal sur-
face and the continuous aperture of the DLA. This continuous
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Fig. 11. Comparison between a dielectric lens (a), a traditional microwave
lens composed of arrays of receiving and transmitting antennas (b), and the
proposed conformal metamaterial-based microwave DLA composed of sub-
wavelength periodic structures (c).

Fourier transform is affected by the wave propagation between
the focal arc and the aperture of the DLA. However, consistent
with the critical sampling described in Sec. III, we can accu-
rately approximate this continuous Fourier transform by an
n× n discrete Fourier transform (DFT) matrix corresponding
to critical (Nyquist) -λc/2 - sampling of the aperture and the
focal arc:

Ua(`,m) =
1√
n
e−j 2π`m

n , ` ∈ I(n) , m ∈ I(n) (32)

The index` represents samples on the aperture (spatial do-
main) and the indexm represents samples on the focal arc
(beamspace).

The analog component of the CAP-MIMO architecture is
based on a high-resolution DLA to approximate a continuous-
aperture phased-MIMO operation that enables capacity max-
imization of a LoS link as well beam agility for robust
operation. Fig. 11 provides a comparison between a dou-
ble convex dielectric lens, a conventional microwave lens
composed of arrays of receiving and transmitting antennas
connected through transmission lines with variables lengths
[7], [8], [9], [10], [11], [12], [13], [14], and a high-resolution
DLA that we plan to use in this work [15]. The high-resolution
DLA is composed of a number of spatial phase shifting
elements, or pixels, distributed on a flexible membrane. The
local transfer function of the spatial phase shifters can be
tailored to convert the electric field distribution of an incident
electromagnetic (EM) wave at the lens’ input aperture to a
desired electric field distribution at the output aperture.These
high-resolution DLAs have several unique advantages over
conventional antenna-based microwave lenses, including:1)
Their spatial phase shifters are ultra-thin and their lateral
dimensions can be extremely small, e.g.0.05λc × 0.05λc as
opposed toλc/2 × λc/2 in conventional DLAs [15]. This
offers a greater flexibility and a higher resolution in designing
the aperture phase shift profile of the lens; 2) Due to their
small pixel sizes and low profiles, the high-resolution DLAs
have superior performance at oblique angles of incidence with
field of views of±70◦; and 3) Unlike conventional microwave
lenses, high-resolution DLAs can operate over extremely wide
bandwidths with fractional bandwidths exceeding50%.



2) The Digital TransformUe = Ud: The n × p digital
transformUe represents mapping of thep, 1 ≤ p ≤ pmax,
independent digital signals onto the focal arc (surface in 2D),
which is represented byn samples. Different values ofp
represent the different CAP-MIMO configurations. We denote
the digital transform for the basic transmitter architecture by
Ud; that is,Ue = Ud. For p = pmax (MUX configuration),
Ud reduces topmax × pmax identity transform; that is, the
pmax inputs are directly mapped to correspondingpmax feeds
on the focal arc. Forp < pmax, Ud effectively maps the
independent digital signals to the focal arc so thatp data
streams are mapped ontop beams with wider beamwidths
(covering the same angular spread - subtended by the receiver
array aperture). Wider beamwidths, in turn, are attained via
excitation of part of the aperture. We next provide an explicit
construction ofUd.

For a givenp ∈ {1, 2, · · · , pmax} representing the number
of independent data streams, define theoversampling factor
as

nos(p) = pmax/p , p = 1, · · · , pmax (33)

The p digital streams are mapped intop beams that are
generated by a reduced apertureA(p) = A/nos corresponding
to

na(p) = n/nos = np/pmax (34)

(fewer) Nyquist samples. The resulting (reduced) beamspace
resolution is given by

∆θ(p) = 1/na(p) = (1/n)(pmax/p) = ∆θonos(p) (35)

where∆θo = 1/n is the (highest, finest) spatial resolution af-
forded by the full aperture. The reduced beamspace resolution
corresponds to a larger beamwidth for each beam.

Then×p digital transformUd consists of two components:
Ue = U2U1. The na(p) × p transformU1 represents the
beamspace to aperture mapping for thep digital signals
corresponding to an aperture withna(p) (Nyquist) samples:

U1(`,m) =
1

√

na(p)
e−j 2π`m

na(p) =

√

nos

n
e−j

2π`mnos
n , (36)

where` ∈ I (na(p)) , m ∈ I(p). The n × na(p) mapping
U2 represents an oversampled - by a factorn/na(p) = nos -
IDFT (inverse DFT) of thena(p) dimensional (spatial domain)
signal at the output ofU1:

U2(`,m) =
1√
n
ej

2π`m
n , ` ∈ I(n) , m ∈ I(na(p)) (37)

For a givenn, pmax, and p, the n × p composite digital
transform,Ud, can be expressed as

Ud(`,m) = (U2U1)(`,m) =
∑

i∈I(na(p))

U2(`, i)U1(i,m)

=
1√
nos

1

na

∑

i∈I(na)

ej2π(
`−mnos

nos
) i
na

=
1√

nosna

fna

(

1

na

(

`

nos

−m

))

, (38)

wherefn(·) is defined in (13),̀ ∈ I(n) represent the samples
of the focal arc of DLA andm ∈ I(p) represent the indices
for the digital data streams. Note that forp = pmax(na =
n, nos = 1), Ud reduces to apmax × pmax identity matrix.
Even for p < pmax, only a subset of the outputs ofUd are
active, on the order ofpmax, which can be estimated from
(38).

B. The Modified Digital Transform: Transmission on Eigen-
modes

Recall the system equation (7) for the critically sampled
LoS MIMO link. With reference to Fig. 3, then-dimensional
transmit signal vectorx = [x1, · · · , xn]

T is a sampled
representation of the signals radiated by the DLA aperture.
Furthermore,x = Uaxa, where (with slightly modified
notation compared to Fig. 3)xa = [xa,1, · · · , xa,n]

T is the
n-dimensional representation of the (analog) signals at the
focal surface of the DLA. Finally, thexa = Uexe where
xe = [xe,1, · · · , xe,p]

T is the p-dimensional vector of digital
symbols at the input of the digital transformUe. For the basic
transmitter architecture,Ue = Ud, whereUd is defined in
(38). For the basic transmitter structure, we can rewrite the
system equation (7) directly in terms ofxe as

r = HUaUdxe +w = HUtxxe (39)

= Hredxe (40)

where

Utx = UaUd (41)

is the effectiven × p transmission matrix coupling thep-
dimensional vector of input digital symbols,xe, to the the
n-dimensional signals on the DLA aperturex = Utxxe.
It can be shown [4], [18] that thep column vectors of
Utx form approximate transmit (spatial) eigenmodesof the
transmit covariance matrixΣtx = H

H
H and transmitting

over these eigenmodes is optimum (capacity-achieving) from
a communication theoretic perspective. In other words,Utx

enables optimal access to thep ∈ {1, · · · , pmax} digital modes
in the channel. We note that forp < pmax, the dimension of
Σtx is reduced due to partial excitation of the transmitter DLA
aperture - in other words, a reconfigured version of the LoS
channel is in effect whenUd is configured for transmitting
p < pmax digital symbols simultaneously.

The approximate eigenproperty ofUtx = UaUd gets more
accurate for largepmax. However, for relatively smallpmax,
this approximation can be rather course. In this case, while
Utx still enables access to the digital modes, the columns of
Utx deviate from the true spatial eigenmodes. We now outline
a modification of the digital transform to enable transmission
onto the true spatial eigenmodes of the channel. LetΣtx,red =
H

H
redHred denote thep× p transmit covariance matrix of the

reduced-dimensionaln × p channel matrixHred = HUaUd

in (40). Further, let

Σtx,red = UredΛredU
H
red (42)



denote the eigendecomposition of theΣtx,red whereUred is
thep×p dimensional matrix of eigenvectors andΛred is ap×p
diagonal matrix of (positive) eigenvalues. With the knowledge
of Ured we can modifyUtx in (41) as

Utx = UaUdUred (43)

to enable transmission onto the exactp eigenmodes for the
channel wherep ∈ {1, · · · , pmax}, Ud is the digital transform
in the basic transmitter architecture defined in (38) andUred

is defined via the eigendecomposition in (42). We note that
in this case the overalln × p digital transformUe in Fig. 3
is given byUe = UdUred (as opposed toUe = Ud in the
basic architecture).

C. Receiver Architecture

We have mainly focussed on the transmitter architecture
thus far. In this section, we outline potential receiver architec-
tures. First of all, the receiver architecture is also DLA-based
to enable efficient access to thep digital modes. That is, the
receiver antenna consists of a DLA. In terms of the system
equation (7), then-dimensional received signalr, representing
the signal on the aperture of the receiver DLA, gets mapped
to ann-dimensional signal,ra, the focal surface of the DLA
via

ra = U
H
a r (44)

where then×n matrix/transformUH
a represents the mapping

from the receiver DLA aperture to the feeds on the focal
surface. As in the case of the transmitter architecture, on the
order ofpmax elements ofra (feeds on the focal surface), out
of the maximum possiblen, will carry most of the significant
received signal energy. A/D conversion at the receiver (in-
cluding down conversion from passband to baseband) applies
to these active elements ofra. Thus, the complexity of the
A/D interface at the receiver has a complexity on the order of
pmax. The resulting vector of digital symbols, derived fromra
via A/D conversion, can be processed using any of a variety
of algorithms known in the art (e.g., maximum likelihood
detection, MMSE (minimum mean-squared-error) detection,
MMSE with decision feedback) to form an estimate,x̂e, at
the receiver of the transmitted vector of digital symbolxe.

We note that any of a variety of space-time coding tech-
niques may also be used at the transmitter in which digital in-
formation symbols are encoded into asequence/block ofcoded
vector symbols, {xe(i)}, wherei denotes the time index. The
receiver architecture will modified accordingly, as known in
the art. In this case, the corresponding sequence/block of
received (coded) digital symbol vectors, derived fromra, is
processed to extract the encoded digital information symbols.

IX. EXTENSIONS TODIFFERENT-SIZED ANTENNAS AND

MULTIPATH CHANNELS

We have described the CAP-MIMO theory for the special
of LoS link with identical-sized antennas. We now outline the
general case for LoS links and also extensions to channels
with multipath propagation. We discus the extension in the

1D case for linear apertures. Extensions to 2D apertures follow
straightforwardly according to the comments in Sec. VI.

First, consider 1D LoS links in which the transmitter
and receiver have antennas of different sizes,At and Ar,
respectively. Letnt ≈ 2At/λc andnr ≈ 2Ar/λc denote the
corresponding number of analog modes associated with the
apertures as calculated in (4). The maximum number of digital
modes,pmax, supported by the LoS link is then given by

pmax ≈ AtAr

Rλc

(45)

which is a generalization of (21). The details of the transceiver
architecture described in Sec. VIII are then applicable, using
n = nt at the transmitter andn = nr at the receiver.

The CAP-MIMO transceiver is also applicable to scenarios
involving multipath propagation (rather than LoS propagation).
Consider the general case for antennas as above corresponding
to nt andnr analog modes at the transmitter and the receiver.
An important difference in multipath channels is that the
number of digital modespmax is larger and depends on the
angular spreadssubtended by the multipath propagation envi-
ronment at the transmitter and the receiver [4]. For simplicity,
suppose that the propagation paths connecting the transmitter
and receiver exhibit physical angles within the following
(symmetric) ranges:

φt ∈ [−φt,max, φt,max] , φr ∈ [−φr,max, φt,max] (46)

whereφt and φr denote the physical angles associated with
propagations paths at the transmitter and receiver, respec-
tively, and φt,max and φr,max denote the angular spread of
the propagation environment as seen by the transmitter and
receiver, respectively. In this case, as in the LoS case,pmax

depends on the number of orthogonal spatial beams/modes on
the transmitter and receiver side that lie within the angular
spread of the scattering environments. To calculatepmax, first
calculate the (normalized) angular spreads according to (10)
for critical d = λc/2 spacing:

θt,max = 0.5 sin(φt,max) , θr,max = 0.5 sin(φr,max) (47)

The spatial resolutions (measures of beamwidths) at the trans-
mitter and the receiver are given by

∆θo,t =
1

nt

, ∆θo,r =
1

nr

. (48)

Then, analogous to the derivation of (21), the number of
orthogonal beams at the transmitter and the receiver that
couple with the multipath propagation environment are given
by

pmax,t =
2θmax,t

∆θo,t
= sin(φt,max)nt ≈

2 sin(φt,max)At

λc

pmax,r =
2θmax,r

∆θo,r
= sin(φr,max)nr ≈ 2 sin(φr,max)Ar

λc

(49)

and the maximum number of digital modes supported by the
multipath link is given by the minimum of the two

pmax = min(pmax,t, pmax,r) . (50)



X. I MPLEMENTATION DETAILS

We now provide some implementation details at the trans-
mitter side, in particular emphasizing the D/A interface be-
tween the digital and analog transforms in Fig. 3. Similar
details apply on the receiver side.

First, with a slightly different notation compared to Fig. 3,
let xe(i) = [xe,1(i), xe,2(i), · · · , xe,p(i)]

T denote thep-
dimensional vector of input digital symbols at (discrete) time
index i. The p input digital data streams correspond to the
different components ofxe(i). The digital symbols may be
from any discrete (complex) constellationQ of size |Q|. For
example,|Q| = 4 for 4-QAM. Each vector symbol contains
p log2 |Q| bits of information,log2 |Q| bits per component.

The digital transformUe is an× p matrix that operates on
the (column) vectorxe(i) for eachi; that is,

xa(i) = Uexe(i) , i = 1, 2, · · · (51)

where xa(i) = [xa,1(i), xa,2(i), · · · , xa,n(i)]
T is the n-

dimensional vector of (digitally processed) digital symbols at
the output ofUa at time indexi. As noted earlier, for eachi,
only a small subset of output symbols inxa(i), on the order
of pmax, is non-zero. Let this subset be denoted byO. The
D/A conversion and upconversion to passband occurs on this
subset of symbols. The analog signal for a given component
of xa(i) in O can be represented as

xa,`(t) =
∑

i

xa,`g(t− iTs) , ` ∈ O (52)

wherexa,`(t) denotes theanalog signal, at the output of the
D/A, associated with thè-th output data stream in the setO,
g(t) denotes the analog pulse waveform associated with each
digital symbol, andTs denotes the symbol duration.

The analog signal for each active digital streamxa,`(t) is
then upconverted onto the carrier

xa,`(t) → xC
a,`(t) cos(2πfct)− xS

a,`(t) sin(2πfct) , ` ∈ O
(53)

wherexC
a,`(t) andxS

a,`(t) denote the in-phase and quadrature-
phase components ofxa,`(t). The upconverted analog signals
corresponding to the active components inO are then fed to
corresponding feeds on the focal arc.

Since each vector digital symbol containsp log2 |Q| bits of
information, the transmission rate in bits per second is given
by

R =
p log2 |Q|

Ts

bits per second (54)

For example, forp = 4, 4-QAM constellation, and a band-
width of 1 GHz,Ts = 1 nanosecond and the transmission rate
is 8 gigabits per second.
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