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Communication modes in large-aperture
approximation
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Simplified versions of the communication modes in the Fresnel domain are derived when the system aper-
tures are large. The approximate modes, which are in the form of spherical waves and sinc functions with a
spherical curvature, give physical insight into the communication modes approach and the basic limits of
free-space optical communication systems. They also show that Gabor’s information theory is readily de-
rived from the communication modes. © 2007 Optical Society of America
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In free-space optical communication the number of
available spatial channels, and the amount of infor-
mation that may be transferred, are limited by the
geometry of the system and by the wavelength of the
optical field. A theory describing this limit was intro-
duced by Gabor in 1961, based on intuitive diffractive
optics arguments and sampling theorems.1 Later, the
more systematic theory of the so-called communica-
tion modes was developed, based on analytical
singular-value decomposition.2–4 This approach is
less intuitive than Gabor’s method, but it gives a
more complete and accurate description of the infor-
mation transfer capacity. For example, it can yield
the best possible approximation for a given target
field distribution,5 and it also allows for the noise
level to be included in the analysis. The communica-
tion modes have been found and applied in several
different geometries, e.g., communication between
two line apertures perpendicular to the optical
axis2,3; between circular apertures,2 rectangular ap-
ertures, or volumes4; and between an axial line and a
line6 or an annular7 aperture. In all these geom-
etries, the communication modes consist of various
modifications of the prolate spheroidal wave
functions2 (PSWFs).

In this Letter we show that in certain usual cases
involving sufficiently large apertures it is possible, by
use of an appropriate approximation, to find a sim-
pler version of the communication modes.8 For the
geometry consisting of two line or square apertures,
perpendicular to the optical axis within the Fresnel
diffraction regime, this approximation leads to ex-
actly the same modes as those employed in Gabor’s
theory.

For simplicity we consider scalar waves in a one-
dimensional (1D) geometry as illustrated in Fig. 1. A
transmitting aperture of width 2�xT is located in the
plane z=0, and the field is detected, at a distance z,

by a receiving aperture of width 2�xR. The Fresnel
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diffraction integral then describes light propagation
at frequency � according to

UR�xR� = �
−�xT

�xT

G�xR,xT�UT�xT�dxT, �1�

where UT and UR are the transmitted and received
fields, respectively, and the Green function is

G�xR,xT� =
exp�ikz�

�i�z
exp�ik

�xR − xT�2

2z � , �2�

with k=� /c=2� /� being the wavenumber and � the
wavelength. Let us first introduce new fields across
the apertures via the relations

a�xT� = UT�xT�exp�ikxT
2 /2z�, �3�

b�xR� = UR�xR�exp�− ikxR
2 /2z�, �4�

whereby Eqs. (1) and (2) take on the forms

b�xR� = �
−�xT

�xT

g�xR,xT�a�xT�dxT, �5�

Fig. 1. Illustration of the geometry and notations. The
Fresnel domain communication modes an�xT� and bn�xR�
are normalized PSWFs with quadratic phase factors in

both apertures.
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g�xR,xT� =
exp�ikz�

�i�z
exp�− ik

xRxT

z � . �6�

These equations simply correspond to the fields from
which the characteristic phase curvatures across the
apertures have been removed.

In the communication modes approach the Green
function appearing in Eqs. (5) and (6) is expanded
biorthogonally as5,9,10

g�xR,xT� = 	
n=0

N

gn�n�xR��n
*�xT�, �7�

where the asterisk denotes the complex conjugate
and gn are the singular values and �n�xT� and �n�xR�
the singular functions of Eq. (5), which obey

�
−�xT

�xT

g�xR,xT��n�xT�dxT = gn�n�xR�, �8�

�
−�xR

�xR

g*�xR,xT��n�xR�dxR = gn
*�n�xT�, �9�

and N is the number of (strongly connected) modes.
The mode functions �n�xT� and �n�xR� form complete
orthonormal sets of functions in their respective do-
mains. On substitution and integration it follows at
once from Eqs. (6), (8), and (9) that2


gn
2�n�xT� = �
−�xT

�xT sin��T�xT − xT� ��

��xT − xT� �
�n�xT� �dxT� , �10�

where �T=k�xR /z, with a similar, fully analogous in-
tegral equation for the modes �n�xR�. It is known that
the PSWFs of width �T and scale �xT are solutions to
Eq. (10),2 and thus the functions �n�xT� are normal-
ized PSWFs. The eigenvalues gn show a step-like be-
havior, dropping rapidly to zero after n exceeds the
number of degrees of freedom N=2�xT ·2�xR /�z.

On expanding the field a�xT� in terms of the trans-
mitting modes as

a�xT� = 	
n

ãn�n�xT�, �11�

where the coefficients are

ãn = �
−�xT

�xT

a�xT��n
*�xT�dxT, �12�

the field in the transmitting aperture assumes the
form

UT�xT� = 	
n

ãnan�xT� = 	
n

ãn�n�xT�exp�− ikxT
2 /2z�,

�13�

where Eqs. (3) and (11) were used. With the help of
Eqs. (4), (8), and (13) the field in the receiving aper-

ture then is
UR�xR� = 	
n

b̃nbn�xR� = 	
n

gnãn�n�xR�exp�ikxR
2 /2z�,

�14�

where b̃n=gnãn. Hence the transmitting and receiv-
ing modes an�xT� and bn�xR� are converging and di-
verging PSWFs, respectively.11 Examples of these
modes, together with the coupling coefficient gn, are
schematically shown in Fig. 1.

Let us now consider the limit of a large transmit-
ting aperture, i.e., a situation in which the full width
2� /�T of the sinc kernel in Eq. (10) is much narrower
than the aperture 2�xT. This criterion translates to
the condition that the number of modes be large
�N�2�. It is well known that in such a limiting case
an integral equation of the type of Eq. (10) admits
normalized harmonic exponential functions as eigen-
functions in the integration domain and the eigenval-
ues are samples from the power spectrum,12 as can be
seen by extending the integration limits from �xT to
infinity. From Eq. (10) we find the approximate func-
tions �an�xT� of the transmitting region as

�an�xT� =
1

�2�xT

exp�in
�xT

�xT
� , �15�

where n is an integer and the approximate eigenval-
ues gan are

gan = 1, when 
n
 � 
n
max = 2�xT�xR/�z, �16�

and gan=0 otherwise. The integral equation for the
modes determines only 
gan
2, and we have here cho-
sen gan as real. We emphasize that there is no one-to-
one correspondence between the exact (real) PSWFs
and the approximate (complex) �an�xT�.13

The approximate receiving aperture modes �an�xR�
are then obtained with the help of Eq. (8). After
straightforward integration the result is

�an�xR� =
exp�ikz�

�i�z
�2�xT sinc�k�xT

z �xR −
n�z

2�xT
�� ,

�17�

where sinc�x�=sinx /x. We emphasize that the func-
tions �an�xR� are no longer strictly orthogonal in the
domain �−�xR ,�xR� due to the approximations made,
nor do they rigorously solve Eq. (9). The mode n=0 is
located in the center of the receiving aperture,
whereas the modes corresponding to the highest val-
ues n= ± 
n
max= ±2�xT�xR /�z end up at the aperture
edges xR= ±�xR.

The full version of the approximate modes aan�xT�
and ban�xR� in the transmitting and receiving do-
mains additionally contain the associated quadratic
phase factors [cf. Eqs. (13) and (14)], i.e.,

aan�xT� = �an�xT�exp�− ikxT
2 /2z�, �18�

ban�xR� = �an�xR�exp�ikxR
2 /2z�. �19�

The physical interpretation of these approximate

modes is very interesting. The functions aan�xT� in
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the transmitting region are converging spherical
waves, as shown in Fig. 2. The mode number n deter-
mines the tilt of the wavefront, and hence the posi-
tion of its focus. In the focus, a sinc function de-
scribed by �an�xR� is created. Each such spot can be
regarded as a separate channel for transmitting in-
formation. The number of channels is limited by the
number of nonzero coupling coefficients, which in this
large-aperture approximation according to Eq. (16) is
N=2 
n
max=4�xT�xR /�z, just as for the exact com-
munication modes.

Note that we may view the approximate modes
�an�xT� as basis functions in a discrete, normalized
plane-wave (angular spectrum) representation14 of
the field a�xT� in the transmitting aperture [c.f., Eq.
(11)], with the inclination proportional to n. The re-
ceiving aperture modes �an�xR� then are shifted sinc
functions corresponding to their Fourier transforms
(far field).

It is also of fundamental interest to assess the
number of separate information channels on the ba-
sis of resolution in this approximation, i.e., the spot
size of the receiving aperture modes given by Eq.
(17). According to the Rayleigh criterion the mini-
mum distance between two resolved spots is 	xR
=�z /2�xT. Hence if each such image spot is viewed as
a separate channel, the receiving aperture 2�xR ad-
mits

N =
2�xT · 2�xR

�z
�20�

independent information channels. This is, again,
precisely the number of degrees of freedom of the
communication modes.2

It is obvious from the formal development of the
communication modes that the information system is
highly symmetric with regards to the transmitting
and receiving domains. Hence the large-aperture ap-
proximation could as well be made the other way
around: the sinc kernel (with �R=k�xT /z) for the
modes �n�xR� is assumed to be much narrower than
the aperture width 2�xR [c.f., Eq. (10)]. The approxi-
mate modes �an�xR� then are normalized, tilted plane
waves. Hence the mode functions aan�xT� in the

Fig. 2. The approximate communication modes aan�xT� are
converging spherical waves, and they create the modes
ban�xR� that are sinc functions with quadratic phase factors
in the receiving domain.
transmitting region in this approximation would be
sinc functions with converging quadratic phase cur-
vature, each of them producing a diverging spherical
wave ban�xR� in the receiving domain. This is pre-
cisely the situation presented by Gabor.1 He ex-
panded the incident 1D field in sinc functions to re-
move the redundant information according to the
Whittaker–Shannon sampling theorem14 and then
counted the number of degrees of freedom as the
number of these sinc functions within the finite aper-
ture.

In conclusion, we have developed approximate
communication modes in the Fresnel diffraction re-
gime when the apertures are large. These simpler
modes lead to interesting physical understanding of
the communication mode theory and of the limits im-
posed on information by free-space optical communi-
cations systems. They also show the information
theory presented by Gabor can be derived from the
exact communication modes.
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