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We develop a theory for the description of partially coherent wave fields in linear optical systems in terms of
the so-called communication modes. The communication modes are the singular functions and singular values
of the appropriate propagation kernels. In particular, we show that optical fields of any state of coherence may
be readily propagated through deterministic systems using the modal representation based on the system
properties. The relation of the communication modes to the conventional coherent-mode representation is dis-
cussed, and expressions for the effective degree of coherence in the optical system are derived. The results are
illustrated by numerical examples in optical near-field geometry. © 2007 Optical Society of America
OCIS codes: 030.1640, 030.4070, 050.1940, 260.1960.
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. INTRODUCTION
eal-world optical fields are never fully coherent, and the
ide use of new types of light sources, such as LEDs or

emiconductor lasers, has increased the practical need for
ethods of modeling partially coherent light in a variety

f situations. Optical coherence theory provides a well-
stablished basis for that purpose [1], but often the means
f getting some specific knowledge of the behavior of fields
n optical systems becomes mathematically complicated
r numerically demanding. One option for facilitating the
nalysis is to use the coherent-mode expansion, in which
partially coherent field is expressed as an incoherent

um of fully coherent contributions [1–4]. In this paper we
resent an alternative modal approach for the analysis of
artially coherent fields in optical systems, based on the
o-called communication modes.

The communication modes [5] have proved to be a use-
ul concept for the study of resolution, propagation, field
ynthesis, and information content of coherent optical
aves [6–9], even in the context of optical near fields [10].
hey have also been used for the evaluation of the perfor-
ance limits of linear optical components [11]. The coher-

nt communication modes are the singular functions of
he propagation operator, which operates on the field over
ome region of space and gives as a result the field over
ome other region of space (see, for instance, [12] and the
riginal studies cited therein). Some of the attractive
roperties of the communication modes are that in nor-
al situations they form complete orthonormal sets in

he source and observation domains and that there is a
ne-to-one coupling between the source and receiving
odes. Moreover, the communication modes are invariant

n the sense that they are defined solely by the properties
f the optical system, not in terms of the field.
1084-7529/07/103336-7/$15.00 © 2
To extend the applicability of the communication-mode
ethod, we develop in this paper a corresponding repre-

entation for partially coherent light. The statistical prop-
rties of partially coherent wave fields can be propagated
n linear optical systems in a manner that is analogous to
he propagation of the field itself, and we derive formally
he partially coherent communication modes as the singu-
ar functions of such coherence propagation. In determin-
stic media and systems it is found that these modes are
patially fully coherent and can be expressed as products
f the coherent communication modes.

Some concepts based on a similar approach have re-
ently been discussed in connection with applications in
illimeter-wave interferometry [13,14]. Here we formu-

ate a general theory that can be applied to the study of
tationary, partially coherent optical fields in free-space
ropagation as well as in many kinds of linear systems. In
ection 2 we briefly recall the basics of the communica-
ion modes representation of coherent fields, and in Sec-
ion 3 the same notions are generalized for spectrally par-
ially coherent scalar waves. In particular, we
emonstrate how the communication modes of partially
oherent light can be solved in deterministic media and
ptical systems. The propagation of partially coherent
elds in terms of the communication modes is then dis-
ussed in Section 4. In Section 5 we also compare this ap-
roach to the method that relies on the traditional
oherent-mode expansion. In addition, in Section 6 we
nd expressions of the effective degree of coherence of
ave fields on the basis of the communication-mode ex-
ansion coefficients. The results are illustrated in Section
by numerical examples related to partially coherent

eams in an optical near-field geometry. The main conclu-
ions are summarized in Section 8.
007 Optical Society of America
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. COMMUNICATION MODES FOR
OHERENT FIELDS
s a basis for the development of the communication-
ode representation for partially coherent fields, we first

riefly introduce the notation and review the foundations
f the communication modes of coherent fields. Let us as-
ume that a coherent field U0 occupies a region A, which,
or instance, may be an aperture in a planar screen. When
ropagated through a deterministic optical system, e.g.,
imply some distance in free space, the resulting field U
n a region O can be expressed as

U�r� =�
A

G�r,��U0���d2�, �1�

here G is the Green function of the system. For physi-
ally realizable systems we may assume that the integral
peration in Eq. (1) is of the Hilbert–Schmidt class, which
ormally means that �G�2 integrated over both domains A
nd O remains finite [15]. This is the case, for instance,
hen G is bounded and A and O are finite. The Green

unction can then be expanded as [15,16]

G�r,�� = �
n=0

�

gn�n�r��n
*���, �2�

here gn, �n, and �n are the solutions to the eigenequa-
ions

�gn�2�n��� =�
A

Ka��,����n����d2��, �3�

�gn�2�n�r� =�
O

Ko�r,r���n�r��d2r�, �4�

n which the kernels are defined as

Ka��,��� =�
O

G*�r,��G�r,���d2r, �5�

Ko�r,r�� =�
A

G�r,��G*�r�,��d2�. �6�

he functions �n and �n are the so-called communication
odes of the optical system, and they form, when normal-

zed, complete orthonormal sets in their respective do-
ains. It follows from Eq. (2) that the mode functions are

onnected by

�
A

G�r,���n���d2� = gn�n�r�, �7�

�
O

G*�r,���n�r�d2r = gn
*�n���, �8�

here the orthonormality of the modes has been used.
In the traditional cases of Fraunhofer and Fresnel dif-

raction, closed-form solutions to the eigenequations exist.
or Fraunhofer diffraction with rectangular apertures,
he communication modes are prolate spheroidal wave
unctions (PSWFs) [17], and in the Fresnel domain they
re closely related to the PSWFs [6,18]. From Eqs. (7) and
8) it is evident that there is a one-to-one coupling be-
ween the source and receiving communication modes.
he coefficients gn define the coupling strengths between
ach pair of mode functions. The coefficients are usually
rdered so that �g0 � � �g1 � � ¯ � �gn � � �gn+1 � �¯. After
ome limit n=N the coupling coefficients become so small
hat in the presence of noise, i.e., in all realistic situa-
ions, the corresponding modes do not effectively contrib-
te to the observed field. In that case, the propagation op-
rator of Eq. (2) can be expressed as a truncated sum of
he first N+1 modes.

. COMMUNICATION MODES FOR
ARTIALLY COHERENT FIELDS
e now proceed to extend the theory for stationary, par-

ially coherent scalar fields. In the space–frequency do-
ain, the statistical properties of the waves can be ex-

ressed in terms of the cross-spectral density [1,2]

W�r1,r2,�� = �U*�r1,��U�r2,���, �9�

here U�r ,�� is a realization that represents the field at
requency � and the angle brackets denote ensemble av-
raging. We thus consider the spatial coherence proper-
ies of the wave field at a single frequency, but in the fol-
owing the frequency dependence is suppressed from the
otation. However, we emphasize that all the functions
nd constants to be introduced are generally frequency
ependent.
For arbitrary partially coherent wave fields traversing
linear optical system, we can write, instead of Eq. (1),

he expression

W�r1,r2� =� �
A

Q�r1,r2,�1,�2�W0��1,�2�d2�1d2�2,

�10�

here W0 and W are the cross-spectral densities of the
eld in regions A and O, respectively, and Q is the propa-
ation kernel corresponding to the system. It is assumed
n Eq. (10) that the randomness of the field and the pos-
ible fluctuations of the optical system are uncorrelated.
s in the coherent case, if the propagation kernel Q is
ounded and if the domains A and O are finite, the coher-
nce propagator can be expanded biorthogonally as

Q�r1,r2,�1,�2� = �
n

dn�n�r1,r2��n
*��1,�2�. �11�

ow dn, �n, and �n are the solutions to the eigenequa-
ions

�dn�2�n��1,�2� =� �
A

Ha��1,�2,�1�,�2���n��1�,�2��d2�1�d
2�2� ,

�12�
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�dn�2�n�r1,r2� =� �
O

Ho�r1,r2,r1�,r2�,��n�r1�,r2��d2r1�d
2r2� ,

�13�

here the kernels are

Ha��1,�2,�1�,�2�� =� �
O

Q*�r1,r2,�1,�2�Q�r1,r2,�1�,�2��

	d2r1d2r2, �14�

Ho�r1,r2,r1�,r2�� =� �
A

Q�r1,r2,�1,�2�Q*�r1�,r2�,�1,�2�

	d2�1d2�2. �15�

rom Eq. (11) we find the following relationship between
he communication modes in the source and receiving do-
ains:

� �
A

Q�r1,r2,�1,�2��n��1,�2�d2�1d2�2 = dn�n�r1,r2�,

�16�

nd similarly for the transformation from the receiving to
ransmitting modes:

� �
O

Q*�r1,r2,�1,�2��n�r1,r2�d2r1d2r2 = dn
*�n��1,�2�.

�17�

o obtain these relations we again made use of the ortho-
ormality of the modes.
Generally, the communication modes associated with

artially coherent wave fields can be solved from the in-
egral equations above [e.g., Eqs. (12) and (13)] using the
ppropriate propagation kernel Q in the same way as in
he coherent case, but the problem now has more dimen-
ions. However, for deterministic optical systems we ob-
ain the solution relatively easily by employing the com-
unication modes of coherent systems. In particular, in

iew of Eqs. (1), (9), and (10), the propagation kernel of
he cross-spectral density in a deterministic linear system
an be expressed rather obviously as

Q�r1,r2,�1,�2� = G*�r1,�1�G�r2,�2�. �18�

t is clear that Q is bounded whenever G is bounded, i.e.,
he expansion in Eq. (11) is valid for all practical deter-
inistic systems. If we take �n, �n, and gn to be the com-
unication modes and the coupling coefficients for the
reen function G in the coherent case, it follows at once

hat the functions

�n��1,�2� = �ml��1,�2� = �m
* ��1��l��2�, �19�

�n�r1,r2� = �ml�r1,r2� = �m
* �r1��l�r2�, �20�

nd the coefficients
dn = dml = gm
* gl �21�

re the solutions to Eqs. (12) and (13). Thus, Eqs.
19)–(21) correspond to the communication modes and
oupling coefficients for partially coherent fields in any
eterministic optical system corresponding to the Green
unction G. Furthermore, it follows directly from the fac-
ored form of Eqs. (19) and (20) that the communication
odes in this case are spatially completely coherent [19].
The method described above for solving the communi-

ation modes for partially coherent fields is valid for any
eterministic optical systems in which the propagator Q
s separable, as in Eq. (18). This includes, for example,
ree-space propagation between two apertures in various
eometries [6,8,9,20], diffraction in imaging systems
21–23], and deterministic radiation and scattering phe-
omena [7,11,24–26]. Most of these studies deal with co-
erent light only, although some effects of incoherence
nd partial coherence have been addressed [27–29]. In
he following sections we restrict ourselves to determinis-
ic systems, but we focus on partially coherent light. It
hould be emphasized, however, that the general ap-
roach based on Eqs. (11)–(15) can be used for finding the
ommunication modes even in more complex cases, such
s propagation in random media and through other fluc-
uating optical systems.

. PROPAGATION OF PARTIALLY
OHERENT FIELDS
he communication modes, defined for the factorable
oherence-propagation kernel in the two domains as de-
cribed in Section 3, provide two basis sets of orthonor-
al, completely coherent functions, given by Eqs. (19)

nd (20). Consequently, the cross-spectral density in the
ource aperture can be expanded in the communication
odes as

W0��1,�2� = �
m=0

�

�
l=0

�

Aml�m
* ��1��l��2�, �22�

here

Aml =� �
A

�m��1��l
*��2�W0��1,�2�d2�1d2�2. �23�

t follows directly from Eqs. (10), (16), and (19)–(21) that
he cross-spectral density in the observation domain then
s

W�r1,r2� = �
m=0

�

�
l=0

�

Amlgm
* gl�m

* �r1��l�r2�, �24�

.e., the propagation operation in an optical system is re-
uced to a simple sum of the modes �m

* �l in the observa-
ion domain, multiplied by the source-field projections Aml
nd coupling coefficients gm

* gl. The optical intensity distri-
ution (at the frequency in question) across the receiving
perture is obtained from the spectral density, defined as
�r�=W�r ,r�.
The projection coefficients Aml contain all the informa-

ion about the state of coherence of the field. Since the
ross-spectral density function is Hermitian, W�r ,r �
2 1
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W*�r1 ,r2�, these coefficients have the general property
hat Aml

* =Alm. In the special case of a spatially completely
oherent source field, the cross-spectral density in the
ransmitting aperture can be expressed as W0��1 ,�2�
U0

*��1�U0��2�, and we find, rather obviously,

Aml =� U0
*��1��m��1�d2�1� U0��2��l

*��2�d2�2 = am
* al,

�25�

here am and al are the projections of the coherent field
nto the communication modes of the coherent system.
ence, the cross-spectral density in Eq. (24) factors in the

wo variables, and the field in the receiving domain is also
patially coherent, as expected physically. On the other
and, if we assume that the source field is spatially inco-
erent, with an intensity distribution I0��� across the
ransmitting region, the cross-spectral density can be
aken to be of the form W0��1 ,�2�=I0��1�
��1−�2�, where
��1−�2� is the Dirac delta function [30]. In such a case,
q. (23) yields

Aml =�
A

I0��1��m��1��l
*��1�d2�1. �26�

combination of Eqs. (24) and (26), which is a form of the
an Cittert–Zernike theorem [1] for optical systems,
hows that the field in the observation domain now is, in
eneral, spatially partially coherent. If the transmitting
ntensity further is a constant, I0���=I0, owing to the or-
honormality of the modes we simply obtain Aml=I0
ml,
here 
ml is the Kronecker delta.

. COMPARISON WITH THE COHERENT-
ODE REPRESENTATION

n Section 4 we already mentioned the case of a fully co-
erent source, which can be considered as a special field
hat contains only a single coherent mode. In general, the
oherent-mode expansion of a partially coherent wave
eld takes on the form [1,2]

W0��1,�2� = �
n

�n�n
*��1��n��2�, �27�

here �n and �n are the eigenfunctions and the eigenval-
es of the Fredholm-type integral equation in domain A,

�
A

W0��1,�2��n��1�d2�1 = �n�n��2�, �28�

ith the cross-spectral density W0 as the kernel. The rep-
esentation in Eq. (27) resembles the expansion in Eq.
22); however, there are important differences. Conceptu-
lly, the most important difference is that the
ommunication-modes, unlike the coherent modes, are
he modes of the system. The effect of the optical system is
ontained in the mode functions and coupling coefficients.
his could be an advantage compared with the coherent
odes in the context of field and coherence propagation.
Mathematically, the expansions in Eqs. (22) and (27)

iffer in that the communication modes do not diagonal-
ze the function W , i.e., the coefficients A are nonzero
0 ml
or m� l, making the communication-mode expansion in
hat sense a less efficient representation of the cross-
pectral density. However, we may readily diagonalize the
ommunication-mode expansion in Eq. (22). Indeed, since
he matrix A= �Aml	 is Hermitian, it can be expressed in
he form

A = UU†, �29�

here U is a unitary matrix and  is a diagonal matrix
ith elements �k�, k=0,1,2, . . .. The elements of A then
re

Aml = �
k

Umk�k��U†�kl = �
k

Umk�k�Ulk
* , �30�

nd the cross-spectral density in Eq. (22) becomes

W0��1,�2� = �
ml

�
k

Umk�k�Ulk
* �m

* ��1��l��2�

= �
k

�k�
�
m

Ukm
* �m

* ��1��
�
l

Ukl�l��2�� ,

�31�

ince Umk=Ukm
* due to unitarity. Hence, comparison with

he expansion in Eq. (27) shows that the coherent-mode
igenvalues are the diagonal elements �k� and the coher-
nt modes are �k=�lUkl�l, where �l are the system’s com-
unication modes.
Regarding the propagation of the coherence properties

f a field, the coherent-mode representation [Eq. (27)] pro-
ides a simpler way than a direct solution of the basic in-
egrals of the form of Eq. (10). More specifically, one can
ropagate the mode functions separately, and the dimen-
ionality of the integrals to be solved is thus reduced.
owever, for studying the propagation of different par-

ially coherent fields in a specified optical system, the set
f coherent modes and their eigenvalues must first be
valuated for each different cross-spectral density. In ad-
ition, the number of significant modes that are needed
enerally increases as the level of coherence of the field is
ecreased.
If expanded in the communication modes [Eq. (22)], the

ropagation of the cross-spectral density becomes very
imple. Once the modes have been established from the
reen function of the system, the propagation consists of
erely finding the expansion coefficients of the arbitrary

ross-spectral density in the source aperture according to
q. (23), multiplying these with the coupling coefficients,
nd carrying out the summation of the receiving modes,
s specified in Eq. (24). Furthermore, as discussed at the
nd of Section 2, the number of the communication modes
ffecting the field in the observation domain depends on
he coupling coefficients (and the level of noise), i.e., the
roperties of the system, instead of the state of coherence
f the field.

. EFFECTIVE DEGREE OF COHERENCE
ince the communication modes are orthonormal func-
ions, expressions can be derived for the various field
roperties in terms of the modes’ coupling coefficients,
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hich are similar to those previously obtained for the
oherent-mode representation [2].

As a preliminary step, let us first consider the field in
he source aperture, described by the expansion in Eq.
22). The spectral density is then, by definition,

S0��� = W0��,�� = �
m=0

�

�
l=0

�

Aml�m
* ����l���. �32�

ntegrating this over the aperture, we find the relation

�
A

S0���d2� = �
m=0

�

�
l=0

�

Aml
ml = �
m=0

�

Amm, �33�

hich follows directly from the orthonormality of mode
unctions �m. This produces the interesting result that
nly the communication modes of the symmetric form

m
* �m contribute to the integrated spectral density in the
perture. The effect of the other (nondiagonal) terms is
anceled out in the integration, but they may still locally
ffect the intensity distribution. In the same way, we may
valuate the squared absolute value of the cross-spectral
ensity integrated over the aperture. This readily yields

� �
A

�W0��1,�2��2d2�1 d2�2 = �
m=0

�

�
l=0

�

�Aml�2, �34�

here the orthonormality of the modes was used.
We may now turn our attention to the effective degree

f coherence, which in a domain D is defined through the
lassic formula [31]

�2 =

� �
D

�W�r1,r2��2d2r1d2r2

� �
D

S�r1�S�r2�d2r1d2r2

. �35�

e note that on introducing the complex degree of spatial
spectral) coherence [1]

��r1,r2� =
W�r1,r2�

�S�r1�S�r2�
, �36�

q. (35) assumes the form

�2 =

� �
D

S�r1�S�r2����r1,r2��2d2r1d2r2

� �
D

S�r1�S�r2�d2r1d2r2

, �37�

howing that � describes, in effect, an average degree of
oherence of the field in D, weighted by the spectral den-
ity. The effective degree of coherence has attracted re-
ewed interest, and its mathematical and physical prop-
rties have recently been extensively studied in a variety
f contexts [4,32–36]. It has also proved useful in experi-
ental characterization of partially coherent light beams

37].
Returning now to the theory of communication modes

nd making use of Eqs. (33) and (34), the effective degree
f coherence in the transmitting aperture thus is
�0
2 =

�ml
�Aml�2

��m
Amm�2

, �38�

n expression entirely in terms of the expansion coeffi-
ients of the communication modes.

We can derive similar results for the spectral density
nd the squared absolute value of the cross-spectral den-
ity given by Eq. (24), integrated over the observation do-
ain O. The effective degree of coherence in the receiving

perture then takes on the form

�2 =
�ml

�gm�2�gl�2�Aml�2

��m
�gm�2Amm�2

. �39�

t is interesting to note that the effective degree of coher-
nce in the observation aperture can be obtained directly
rom the expansion coefficients of the communication
odes in the transmitting aperture and the coupling co-

fficients associated with the optical system.

. NUMERICAL EXAMPLES
s an illustration, we use the communication modes for
odeling the diffraction of a partially coherent Gaussian
chell-model beam in free space between two small aper-
ures in a near-field geometry. For simplicity, we restrict
urselves to a y-invariant situation (which could repre-
ent s-polarized light, i.e., the electric field pointing in the
direction [12]). In this case the source field is defined as

W�x1,x2� = exp−
x1

2 + x2
2

w0
2 �exp
−

�x1 − x2�2

2�0
2 � , �40�

here w0 is the half-width and �0 is the coherence width
f the beam. The propagation of the coherent fields in the

ig. 1. (Color online) Intensity distributions of Gaussian Schell-
odel beams of width w0=10� and coherence �0=� (solid curve,

lack), �0=5� [dashed curve (blue online)], �0=2� [dash–dotted
urve (green online)], and �0=� [dotted curve (red online)] in the
eceiving aperture.
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ystem is accurately governed by Eq. (1) with the one-
imensional diffraction kernel [38,39]

G�x,�x� =
ikz

2

H1
�1��k��x − �x�2 + z2�1/2	

��x − �x�2 + z2�1/2 , �41�

here k=� /c=2� /� is the wave vector of the light and

1
�1� is the Hankel function of the first kind and order one.
ased on the theory presented in Section 2, the coherent
ommunication modes can be solved numerically as the
ingular functions in the biorthogonal expansion of the
ropagation operator. The corresponding communication
odes and coupling coefficients for the partially coherent
ave field are then simply obtained from Eqs. (19)–(21),
nd the diffraction of the light beam on exiting the trans-
itting aperture can be evaluated as described in Section

.
We have chosen the transmitting and receiving aper-

ures to have identical widths, A=O=10�, where � is the
avelength, and the distance between the apertures is
lso z=10�. Figure 1 illustrates the normalized intensity
istributions of various Gaussian Schell-model beams
ith different coherence widths and w0=10� in the re-

eiving aperture. The results show a clear dependence be-
ween the diffraction characteristics and the coherence of
he field. The absolute values of the cross-spectral densi-

ig. 2. (Color online) Absolute values of cross-spectral densitie
5�, (c) �0=2�, and (d) �0=� in the receiving aperture.

ig. 3. (Color online) Effective degrees of coherence in the
ransmitting aperture (solid curve, black) and in the receiving
perture as a function of the coherence width �0 of Gaussian
chell-model beams with w0=10�. The observation-domain
urves correspond to different propagation distances between the
pertures: z=10� [solid curve with dots (blue online)], z=25�
dashed curve (green online)], z=50� [dashed–dotted curve (red
nline)], and z=100� [dotted curve (magenta online)].
ies of the same fields, calculated by means of the commu-
ication modes, are illustrated in Fig. 2. Though not
hown, we have checked numerically that the same re-
ults are obtained if the field is represented using the co-
erent modes and these are propagated individually
hrough the system.

We also demonstrate the use of the communication
odes for determining the effective degree of coherence of
aussian Schell-model beams in the receiving apertures
f similar systems as described above. In Fig. 3, the re-
ults obtained from Eq. (39) are illustrated as a function
f the coherence width of the beam for different propaga-
ion distances. The communication modes must be solved
eparately for the systems with different propagation dis-
ances, but the changes in the beam coherence are simply
overned through the expansion coefficients. The size of
he apertures is assumed to remain the same in all cases.
hus, as the beam is spreading on propagation, its effec-

ive degree of coherence in the receiving aperture gets
igher with increasing propagation distances. For com-
arison, we also show the effective degree of coherence in
he transmitting aperture.

. CONCLUSIONS
e have developed a general representation of partially

oherent wave fields using the appropriate communica-
ion modes. For deterministic optical systems, these
odes are completely coherent and can be simply ex-

ressed in terms of the coherent communication modes of
he same optical system. The relationship between the
ommunication modes and the conventional coherent
odes of partially coherent wave fields is elucidated. We
ave also shown that the effective degree of coherence can
e expressed in terms the mode projection coefficients of
he source field and the mode coupling strengths associ-
ted with the system, providing a convenient means of as-
essing the effect of the optical system on the overall co-
erence of the field. The results are illustrated by near-
eld GSM beam calculations, demonstrating the accuracy
nd versatility of the communication modes method for
ssessing partially coherent wave fields. Further work
ould include developing the theory for random media
nd various fluctuating optical systems.
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aussian Schell-model beams with w0=10�, and (a) �0=�, (b) �0
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