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Theory of Characteristic Modes for
Conducting Bodies

ROGER F. HARRINGTON, reELLOW, IEEE, AND JOSEPH R. MAUTZ, MEMBER, IEEE

Abstract—A theory of characteristic modes for conducting bodies
is developed starting from the operator formulation for the current,
The mode currents form a weighted orthogonal set over the con-
ductor surface, and the mode fields form an orthogonal set over
the sphere at infinity. It is shown that the modes are the same
ones introduced by Garbacz to diagonalize the scattering matrix
of the body. Formulas for the use of these modes in antenna and
scatterer problems are given. For electrically small and inter-
mediate size bodies, only a few modes are needed to characterize
the electromagnetic behavior of the body.

I. InTRODUCTION

HARACTERISTIC modes have long been used in the
analysis of radiation and scattering by conducting
bodies whose surfaces coincide with coordinate surfaces
of coordinate systems in which the Helmholtz equation is
separable. Recently Garbaez [17] has shown that similar
modes can be defined for conducting bodies of arbitrary
shape. He approached the problem by diagonalizing the
scattering matrix. This led him to the conclusion that the
mode currents are real and the tangential electric mode
field is of constant phase over the surface of the body.
Garbacz, Turpin, and Wickliff [1], [3], [4] used this
property to find the characteristic currents in a few cases,
but they did not obtain convenient formulas for comput-
ing the mode currents in general.

In this paper we approach the problem from the alter-
native viewpoint of diagonalizing the operator relating
the current to the tangential electric field on the body.
By choosing a particular weighted eigenvalue equation,
we obtain the same modes as defined by Garbaez. Our
approach leads to a simpler derivation of the theory and
to explicit formulas for determining the mode currents and
fields. For clarity, we summarize the complete theory of
such modes, although much of the theory is given ex-
plicitly or impleitly in Garbacz [1].

II. CaaracTERISTIC CURRENTS

Consider the problem of one or more conducting bodies,
defined by the surface S, in an impressed electric field E-.
An operator equation for the current J on 8 is [6]

I:L(J) - Ei:ltan =0 <1J
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where the subscript “tan’” denotes the tangential compo-
nents on S. The operator L is defined by

L) = juA(J) + Va(J) )
AD) = u 6 JYer) ds (3)
8
o(J) = ]ll & I (r,r) ds' (4)
we s
Sy = SRk T= 1] -

drjr — 1|

Here r denotes a field point, v’ a source point, and ¢, g,
and & the permittivity, permeability, and wavenumber,
respectively, of free space. Physically, —L(J) gives the
electric intensity £ at any point in space due to the cur-
rent J on S. In an antenna problem, the impressed field
E* is the negative of the tangential component of E over
S, assumed known. In a scattering problem, the impressed
field E* is due to known sources external to S.

We define the symmetric product of two veetor func-
tions B and Con S as.

(B,C) = ¢ B-Cds. (6)

The product {(B*,C), where the asterisk denotes complex
conjugate, defines an inner product for the complex Hilbert
spaee of all square-integrable vector functions on S. The
operator appearing in (1) has the dimensions of imped-
ance, and we introduce the notation

Z(J) = [L(])]tsn- (7)

That Z is a symmetric operator, i.e., {B,ZC) = (ZB,C},
follows from the reciprocity theorem [5]. However, Z is
not a Hermitian operator, i.e., (B*ZC) # (Z*B*,C). Be-
cause Z is symmetrie, its Hermitian parts are real and
given by

R =

(Z + Z%) (8)

o | =

X=l.(Z—Z*). (9)
23

Now Z = R + jX, where R and X are real symmetrie

operators. Furthermore, R is positive semidefinite, since

the power radiated by a current J on S is (J*,RJ) = 0.

If no resonator fields exist internal to S, then R is positive
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definite, i.e., all currents radiate some power, however
small,
Next consider the eigenvalue equation

Z(Jy) = viM (J) (10)

where », are eigenvalues, J, are eigenfunctions, and M
is a weight operator to be chosen. The eigenfunctions for
any choice of symmetric M will diagonalize Z, but only
the choice M = R also gives orthogonality of the radia-
tion patterns. Hence, we choose M = R and set Z =
R + jX in (10), obtaining
(B +3X) (Jn) = vaR(J2). (11)
We next let
v =1+ (12)
and eancel the common term E(J,) in (11), obtaining
X(J,) = MR(L). (13)

Both X and R are real symmetric operators. Henece, all
eigenvalues X\, and eigenfunetions J, must be real. The J,
must also satisfy the usual orthogonality relationships

mRI) =0
Iy XJw) = 0
TmyZn) =0 (14)

where m # n. Furthermore, since the J, are recal, the
orthogonality relationships are also valid for inner prod-
ucts, i.e.,

n* Ry =0
n*XJ0) =0
In*Zd) = 0 (15)

where m 5% n. The choice of {J,} as basis functions there-
fore simultaneously leads to diagonal matrix representa-~
tions of R, X, and Z. We shall eall these J, the character-
istic currents or eigencurrents of the conducting body de-
fined by S.

So far the eigencurrents are of indeterminate amplitude.
Each eigencurrent which radiates can be normalized ac-
cording to

<Jn*yRJn> =1 (16)

i.e., it radiates unit power. Each eigencurrent associated
with an internal resonance cannot be so normalized, but
they are not needed for radiation problems. When normal-
ized according to (16), the orthogonality relationships
(14) and (15) can be combined with (16) to give

<Jm7Ran> = (Jm*,Rv.]n> = 6,7";,
Ty XTn) = (Jn*,XT0) = Mnbaen
TmsZd )y = T2y = (1 4+ jAn)bmn (17)

where 8., is the Kronecker delta (0 if m £ n, and 1 if
m = n). For further theory we assume the eigencurrents
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to be normalized. If unnormalized currents are used, the
factor (J.,RJ.) must be properly introduced into the
theory.

I1I. CrARACTERISTIC FIELDS AND PATTERNS

The electric field E, and the magnetic field H, produced
by an eigencurrent J, on S will be called the characteristic
Jields or eigenfields corresponding to J,. The set of all
E, or H, form a Hilbert space of all fields throughout
space produced by currents on S. We obtain orthogonality
relationships for the characteristic fields from those for
characteristic currents by means of the complex Poynting
theorem [57]. Explicitly, the complex power balance for
currents J on S is given by

P = (J*ZJ) = (J*RJ) + j(J*XJT)
— HE x Htds + jo f/ (uH-H* — E-E*) dr
87 o

(18)

where S’ is any surface enclosing S and 7’ is the region
enclosed by 8’. Equation (18) is a Hermitian quadratic
form, for which the associated Hermitian bilinear form is

If 7. and J, are eigencurrents, then the orthonormality
relationships (17) apply, and we have from (19) and
Maxwell’s equations,

& E, x H.*-ds + jo ff (uHp-H,* — €Ep+E,*) dr
8’ b4

= (1 +j>‘n)5mn~ (20)

This equation can be separated into real and imaginary
parts to give orthogonality relationships similar to the
first two of (17), if desired.

If the body S is of finite extent, and if §’ is chosen to
be the sphere at infinity (S, of Fig. 1), then (20) gives
orthogonality relationships for radiation patterns and
fields. On 8. the characteristic fields are of the form of
outward traveling waves, i.e.,

4] O exp (—jkr) Fa(8,8). (21)
T

En=ﬂann=

Here » = (u/€)'/? is the intrinsic impedance of space, n is
the unit radial vector on S, and (6,¢) are the angular
coordinates of position on S,. The complex vector F, of
(21) is called the characteristic pattern or eigenpattern cor-
responding to the eigencurrent J,. Adding (20) to its con-
jugate with m and » interchanged, we find that

L 4 BBt ds = .
7 S

(22)

Hence, the characteristic far fields form an orthonormal
set in the Hilbert space of all square-integrable vector
funetions on S,. We can also express (22) in terms of the
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Fig. 1. Surfaces and coordinates.

characteristic magnetic field as

0 b Hp-H.*ds = bmn.

Seo

(23)

Finally, subtracting (20) from its conjugate with m and »
interchanged, we obtain the orthogonality relationship

o [[[ bHwHt — B B dr = N (28)
where the integration extends over all space. For m = =,
(24) states -that A, is 2w times the total stored magnetic

energy minus the total stored electric energy. (This as-
sumes normalization aceording to {(/,RJ.) = 1.)

IV. MopaL SOLUTIONS

A modal solution for the current J on a conducting body
can be obtained by using the eigencurrents as both expan-
sion and testing functions in the method of moments [6].
Following this procedure, we assume J to be a linear
superposition of the mode currents

J=3 atn (25)
* where the a, are coefficients to be determined. Substitut-
ing (25) into the operator equation (1), and using the
linearity of L, we obtain

[Z anLJn - Ei]mn = 0. (26)

Next, the inner product of (26) with each J, in turn is
taken, giving the set of equations

zan(Jm)ZJn> - (meE{> = O

n

(27)

where m = 1,2,»-+. Here we have put L. = Z, and
dropped the subseript “‘tan” on E°. Because of the orthog-
onality relationship (17), (27) reduces to

an(1 4 jr2) = (Jn, B, (28)
The right-hand side of (28) is called the modal excitaiion
coefficient:

Vai = (JuE) = §p JrE'ds. (29)
8
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Substituting for «, from (28) into (25), we have the
modal solution for the current Jon S:

Vaid
J= .
L:: 1+ gh

(30)

If the eigencurrents J, are not normalized according to
(16), the term 1 4 jA, in (30) should be replaced by
(1 + 7ha) (I BRI 0).

The fields are linearly related to the currents, and hence
can also be expressed in modal form. Explicitly, these
forms are

V. 'E.,

E=21, (1
V.'H,

T=E 0, &2

where E and H are the fields from J everywhere in space.
Again, if the eigencurrents are not normalized, the term
1 + jr. must be replaced by (1 + j\,) (Jn,RT,).

Finally, if the reciprocity theorem [5] is used, alter-
native expressions for the modal excitation coefficients are
obtained. For example, if E¢ is produced by an electric
current J¢, then reciprocal to (29) we have

Vai = ff E.-Jidr

where the integration extends over the impressed currents.
Similarly, if £¢is produced by a magnetic current M¢, then
reciprocal to (29) we have

Vii= — fff H, M dr.

More generally, if E? is produced by both electric currents
Ji and magnetic currents M, then V,* is given by the
sum of (33) and (34).

(33)

(34)

V. LiINEAR MEASUREMENTS

Any scalar p linearly related to the current, ie., a
linear functional of the current, will be called a linear
measurement of the current. Two examples of linear meas-
urements are 1) a component of the eurrent at some point
on S, or 2) a component of the field (E or H) at some
point in space. Every linear functional of J can be ex-
pressed as

p = (BJ) (35)

where E™ is a given vector function, usually an eleetric
field on 8. For example, if p is the jth component of the
field E,7 from J, then (35) becomes [5], [6]

By = (BJ) (36)

where E7is the electric field on S produced by a j-directed
electric dipole Il = 1 placed at the field point. If the jth
component, of H were desired, then a unit magnetic dipole
would be placed at the field point, and so on.
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If the modal solution (30) is substituted into the gen-
eral measurement formula (35), there results

VniVnm
= 37
=2 37
where V,™ is the modal measurement coefficient
Vo = (Ju,Emy = b Jo-Emds. (38)
8

Note that V,™ is of the same functional form as the exeita-
tion coefficient V,.f given by (29). Hence, (37) is a sym-
metric bilinear functional of E? (the impressed field, or
excitation) and of E» (the measurement field, or adjoint
excitation). Of course, the symmetry of (37) is a conse-
quence of the symmetry of the original operator Z.
Reciprocal forms for the measurement coefficients, anal-
ogous to (33) and (34) for excitation coefficients, ecan also
be written. For example, if the source of E™ is electric

current J7, then
Var = [[[ By i ar

analogous to (33). If the source of E™ is magnetic current

M™, then
Var = —f/fﬂn-M’"df

analogous to (34). Finally, if £ is produced by both a
J= and an M™, the measurement coefficient V,™ is given
by the sum of (39) and (40).

(39)

(40)

VI. APPLICATION TO RADIATION AND

SCATTERING PROBLEMS

Two important specializations of the general theory are
1) radiation from apertures in conducting bodies and 2)
plane-wave scattering by conducting bodies. Explicit for-
mulas for these two cases are given in this section. Other
problems, such as antennas in the vicinity of conductors
and near-field measurements, are also special cases of the
general formulas, but they are not considered explicitly.

Consider a conducting body of surface S in which one
or more apertures exist, as suggested by Fig. 2. There are
sources internal to S which produce a tangential electrie
field Ei. (assumed known) over the apertures. Then
Et = —FE,, is the impressed field, and the mode ex-
citation coefficients (29) become

Vai = — & Ju-Epn ds. (41)
8

The radiation pattern for the aperture is then given by
the modal solution (31). For computation, we must deal
with one number at a time, say some component of E at
a particular position (,¢) on S,. For this, we place a
unit electric dipole Il = u,, at (8,¢) on S, and evaluate
the modal measurement coefficient by (38) and (39).
This gives

Vi = §f JooEmds = Ey tn (42)
S

CONDUCTING BODY

Fig. 2. Aperture antenna.
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Fig. 3. Conducting scatterer.

where E™ is the field produced by the distant dipole.
Explicitly, in the vicinity of S the dipole field is [5]

En = 2 exp (
T

—7krm) [Um exp (—jkn 7)) (43)

Here k.. is the vector propagation constant of the wave
from Il = u, and r,, is the position vector to Il (see Fig. 2).
Now (42) becomes

Var = 4J exp (—Jjktm) # o Up exp (—jkym-1) ds.
(44)
Substituting this into (31) dotted into u,., we have
—Jup VaiRym .
E-u, = krm 4
un = Pl exp () T (49)
where the V,? are given by (41) and
(46)

B = § Tty exp (—jkn-1) ds
S

are the plane-wave measurement coefficients. Equation
(45) provides a convenient formula for computations.

Next, consider a conducting body of surface S in a
plane-wave scattering problem, as suggested by Fig. 3.
The impressed field is the unit plane wave

(47)

where u; is the polarization vector and k; is the propaga-
tion vector. The excitation coefficients (29) are now

V.i= R, = # Joou;exp (—jkier) ds.
N

Ei = u;exp (—jki'r)

(48)

Note that this is of the same functional form as the plane-
wave measurement coefficients (46), hence the notation
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R, for (48). The determination of the scattered field at
some measurement position (0n,¢~) is the same problem
as the determination of the radiation field in the antenna
problem. Hence, the scattered field in the direction (8m,¢m)
is given by (45) with V,* replaced by £.% or
—jwy Rn"an

— 7kt — .
47T exp (=7 T)Zn:1+j)\n

E-u, = (49)

A commonly used parameter in plane-wave scattering
problems is the echo area, defined as [5]

o = 4rr,t | E-u, |2 (50)
Substituting from (49) into (50), we obtain
2 2 Rn-.'R"m 2
ol DI (51)
47 |71 4 jh,

Note that ¢ is a function of the polarization of the incident
wave u; and of the measurement wave u,,, as well as of
the coordinates (6;,¢:) of the incident wave direction and
(Bm¢=) of the measurement direction.

VII. Dyapic REPRESENTATIONS

Any bilinear functional can be represented in terms of
a dyadic operator, the Dirac bra-ket notation being well
suited for this purpose. In the modal solution for the
cwrrent, let E?) denote the tangential component of the
impressed E on S, and J) a current on S. The character-
istic currents are denoted by J,) or {(J.. Then (30) be-
comes

T ED
J) = ‘? 1 4 jia

"~ where we have used (29) for the excitation coefficients.
- Similarly, if {(£™ denotes the tangential component of the
measurement field E™ on S, the general linear functional
(37) becomes

(52)

o (B B
P E 1+ jh

where we have used (38) for the measurement coefficients.
It is evident from (53) that

(53)

o)
= Z—l = LSS
Y z,.: 1457

is a dyadic representation for the inverse operator to Z,
called the spectral form of ¥ = Z-1. In terms of (54),
we can write (52) as

(54)

J) = YE?) (55)

which is the inverse equation to our starting equation
ZJ) = E%), Similarly, we can write (53) as

p = (E~YEY). (56}
The inverse to this equation is
p = (J™ZJ%) (57)
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where (J™ is the current on S exeited by the measurement,
field (E™ and J¥) is the current on § excited by the im-
pressed field E*).

If the impressed and measurement fields are produced
by electric currents, we can use the reciprocal formulas
(33) and (39) for the excitation and measurement co-
efficients. For this, we introduce the bilinear produet

{A,B} = f[ A-Bdr (58)
where the integration is over all space. Now let £} denote
the eleetric field E everywhere in space, and J¢} the im-
pressed sources everywhere in space. In terms of the mode
fields E,} or {E,, we can now write the electric field (31)
as

_ Eﬂ} {Eﬂ;J’.}
By = Zn: 1+

where we have used (33) for the excitation coefficients.
Similarly, if {J™ denotes the source of the measurement
field everywhere in space, the general linear functional
(387) becomes

(59)

< B BT
P TN

where we have used (39) for the measurement coefficients.
It is now evident that

(60)

< E (B,
L= ?1 + i

is a dyadic operator in spectral form. In terms of (61),
we can write (59) as

(61)

E} = 1J% (62)

from which it is evident that T' is a type of the Green’s
function. Explicitly, it gives the field E due to J on S
(sometimes called the scattered field) when the conduct-
ing body § is excited by impressed sources J¢ elsewhere in
space. Similarly, (60) can be written as

p = {Jm,IJ% (63)

which is an alternative form for the general bilinear func-
tional p.

A development similar to the preceding applies for the
H field if the impressed and measurement fields are pro-
duced by magnetic currents. To summarize, let H,} or
{H, represent the magnetic modal fields, and define the
magnetic dyadic operator

. H. H,
T = )
L? 14\

(64)

Now, letting M¢} denote an impressed magnetic current,
analogous to (59) and (62) we have

—tary = -y T

H} = -
} P

(65)
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The minus sign is due to that appearing in (40). It is
evident that —I' is a magnetic Green’s function, giving
the field H due to J on S when the conducting body is
excited by impressed sources M} elsewhere in space.
Letting {M™ denote a measurement magnetic current,
analogous to (60) and (63) we have

B s AM™Ha ) [ Ha, M) !
p = {M=TM} = Zﬂ: L+ (66)
This is the most general form for a bilinear functional
when both the impressed and measurement currents are
magnetic.

If both electric and magnetic currents exist, it is con-
venient to use a six-component formulation for the prob-
lem [6]. In this case, field vectors ¢ = (E,H) and source
vectors K = (J,M) are defined, and equations (62) and
(65) combined into a single six-component equation. We
have no use at present for this generalization, and will
not pursue it further. '

Finally, if the electric currents for both the impressed
and measurement sources are specialized to unit electric
dipoles on the sphere at infinity, we obtain the bilinear
scattering dyadic introduced by Garbaez [17, [2]. To be
explicit, let the unit incident plane wave be produced by
the distant impressed dipole

-41 T .
- i exp ( jkm)u;
Jwu

Il; = (67)

and let the measurement source be the unit dipole 77,, = u,,.
Let the p of (60) be u,+E, in which case (60) reduces to

—4xr . (U E) (Eaou;)
exp (Jkr) X —— = i

Jow u

U, E = (68)

The pattern functions F, are defined by (21), and (68)
can be written in terms of them as

—‘jwl‘ . (um'Fn) (Fn'ui) P
U, E = —~jk —

1.y oxp (—Jkr) ; T, (69)

Defining the dyadic pattern operator as

F.F,
F=y —=
i 70
we ean write (69) as
Un-E = —22 oxp (—jkr) (U Fous). (71)
4zr

This is the u,, component of the secattered field due to a
u; polarized incident wave. The echo area, defined by
(50), is given by

_ lon)?

Upm Fou; 2. 72"
47 I ' (

ag

~I
n

The dyadic operator § is valid only for the far field, not
for the near field.
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VIII. SCATTERING AND PERTURBATION MATRICES

The scattering matrix was first defined as that matrix
which relates the amplitudes of incoming spherical modes
to outgoing spherical modes [7]. More generally, the in-
coming and outgoing waves can be expanded in terms of
arbitrary basis functions. We show that if the character-
istic fields E, are chosen as the basis of outgoing waves,
and their conjugates E,* as the basis of incoming waves,
then the scattering matrix is diagonalized,

In a scattering problem the far-zone field can be ex-
pressed as the sum of incoming and outgoing waves as

E = Ein + Eout- (73)

For a given scatterer, for each incoming wave E;, there
is a unique outgoing wave E,,.. The scaltering operator is
defined to be that which operates on Ej, to give Ey, 1.e.,

Eot = SEj,. (74)

Given an outgoing wave E,y, the conjugate field E,..*
will be an incoming wave. This is evident from either
spherical mode theory, or consideration of L*, adjoint to
L of (2). The characteristic fields E, are outgoing waves,
and we choose them as basis functions for E,,4, i.e.,

Eoui = 2 b.E.. (75)
The conjugates E.* are incoming waves, and we choose
them as basis functions for Ej,, i.e.,

Ein = 3 anE.* . (76)
The seattering matrix [ 8]is that which relates the column
vector 5 (components b,) to the column vector @ (com-
ponents a,) according to

b = [S]a. (77)

A field of the form E, + E.* is a source-free field, shown
as follows. The wave equation for the field E, due to a
current J, is

VxVxE, —KE, = —jouln.

The field E,* satisfies the conjugate equation. Now if
J, is real, as it is for characteristic currents, then E, + E,*
satisfies the source-free wave equation. Hence, in the ab-
sence of a body, the field will be a linear superposition of
fields of the standing-wave type £, + E.* i.e.,

2 i (Eqy + En¥). (78)

It is evident from (75)—(78) that, when no body is present,
b = a and the scattering matrix is the identity matrix.

When a scatterer is present, the outgoing waves are
partly due to the impressed field E? and partly due to the
field from the currents J on S, called the scattered field
Es. The perturbation operator P is defined to be that which
operates on 2E;, to yield E¢, i.e.,

Es = 2PE;;,. (79)
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The factor 2 was introduced by Garbaez [1] for conven-

ience in other formulas. The field E* is an outgoing wave,
and can be expanded in the E, as

Es = Z cuE'n- (80)
Expansion (76) is still used for Ei,. The perturbation
mairiz [P] is that which relates the column vector €
(components ¢,) to the column vector & according to

¢ = 2[P]a. (81)
It is evident from the definitions of [[S] and [P] that
081 =[I + 2P] (82)

where [7] is the identity matrix.

We next show that both [S] and [P] are diagonal
matrices, and obtain their elements. The impressed field
E? is a free-space field, and hence must be of the form
(78). Because of linearity, it will suffice to show that a
single-mode impressed field excites only the corresponding
modal current. Hence, we assume an impressed field

Ei = E, + E.*. (83)
Then the mode excitation coefficients (29) are
Vol = (B + Ex*) = — (0,2 n + Z% )
= =14+ 1= jA)bun = —20ma.  (84)

Thus, all mode coefficients are zero except V% which is
—2. From (31) we have

—2E..
T

8

(85)

Henece, if E;, is E.*, then E* contains only E. as shown
by (85). If the incident field contains many modes, as in
(78), then the scattered field will contain a sum of terms
of the form of (85). Comparing (81) with (85), it is
evident that

F 1 0 -

1490

[P] = 1 (86)

14 g%

R A A I IR AT S A I )

i.e., [P]is diagonal with elements —1/(1 4+ jA.). Finally,

from (82) we compute the scattering matrix as

_1=gN
14

[81= (87)

1 —Jx
14 7x

-oo-----o-...--c.....oo.----uJ

0

0 -

i.e., [8]is diagonal with elements — (1 — jA.) /(1 4+ 7\.).
These formulas agree with those of Garbaez [1].
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IX. DiscyssioN

An extensive theory of the characteristic modes of con-
ducting bodies is developed in this paper, starting from
the operator equation for the current on the body. These
are the same modes obtained by Garbaez, who started
from the scattering matrix. The statement, made several
times by Garbacz and Wickliff [17, [4], that the pertur-
bation operator fransforms converging modes into diverg-
ing modes of the same form, is somewhat misleading. This
paper shows that the converging modes are transformed
into diverging modes which are the complex conjugate of
the converging modes. We have not considered the ques-
tion of completeness of the sets of mode functions in
Hilbert space. Garbacz [1] considers this question, and
we find his arguments convineing,.

The eigenvalues A, range from — « to + », with those
of smallest magnifude being more important for radiation
and seattering problems. We therefore order the modes
according to | A1 | < x| £ [ n| < o+« Also, (24) shows
that those modes with positive A have predominantly
stored magnetic energy, while those with negative X have
predominantly stored electric energy. We therefore call
those modes with A > 0 inductive modes, and those with
A < 0 capacitive modes. A mode having A = 0 is called an
externally resanant mode. The modes corresponding to the
internal cavity resonances for the conducting surface have
A | = =, and do not enter into radiation and scattering
problems.

We coneur with Garbacz’s speculation that these modes
should prove to be of value, both theoretically and com-
putationally, for radiation and scattering problems. In a
companion paper [9] a straightforward method for com-
puting the modes is given. These computations bear out
the speculation that, for eleetrically small and inter-
mediate size bodies, only a few modes are needed to char-
acterize the radiation and seattering properties of the con-
ducting body. This property, coupled with the orthog-
onality properties of the modes, should make them valu-
able for synthesis and optimization problems in antenna
and scattering theory.
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