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Theory of Characteristic Modes for 
Conducting Bodies 

Absfracf-A theory of characteristic modes for conducting bodies where the subscript  (‘tan”  denotes t,he  tangent,ial compo- 
is developed  starting from the operator  formulation  for the current. nents on 8. The operator L is defined by 
The mode currents  form  a weighted orthogonal set over the con- 
ductor surface,  and the mode fields form an orthogonal set over L ( J )  = j w A ( J )  + V @ ( J )  (2) 
the sphere  at infinity. It is shown  that the modes are the same 
ones introduced by  Garbacz to diagonalize the scattering  matrix A ( J )  = p fi J ( r f ) + ( r J r f )  as’ (3) 
of the body.  Formulas  for the use of these modes in antenna  and S 
scatterer  problems  are  given. For electrically  small  and  inter- 
mediate size bodies, only a few modes are needed to characterize -1  
the electromagnetic  behavior of the body. @(J) = 7 # V . J ( r ’ ) + ( r J r f )  d ~ ’  (4) 

. w e  s 

C 
I. INTRODUCTION 

HARACTERISTIC modes have long  been used in the 
analysis of ra.diation and  scattering  by conduct.ing 

bodies whose surfaces coincide with  coordinate  surfaces 
of coordinate  systems  in n-hich the Helmholtz  equation  is 
separable.  Recently  Garbacz [l] has shown that similar 
modes can  be defined for  conducting bodies of arbitrary 
sha.pe. He approached the problem by diagonalizing the 
scatt.ering  matrix. This led him to  the conclusion t.hat  the 
mode  currents  are  real  and t.he tangent,ial  electric mode 
field is of constant,  phase  over the surface of the body. 
Garbacz,  Turpin,  and Wickliff [l], [3], [4] used this 
property  to find the characteristic  currents in a fen- cases, 
but  they  did not, obtain convenient,  formulas  for  comput- 
ing the mode currents  in general. 

I n  t.his paper we approach the problem  from the alter- 
native  viewpoint of diagonalizing the operator  relating 
the  current t.o the  tangential electric field on the body. 
By choosing a  particular  weighted  eigenvalue  equation, 
we obtain  the same modes as defined by Garba.cz. Our 
approach  leads t.0 a simpler  derivation of the  theory  and 
to  explicit formulas  for  det.ermining the mode currents  and 
fields. For clarit.y, we summarize the complete theory of 
such modes, although  much of t.he t.heorp is given ex- 
plicitly  or  implicitly in  Garbacz [l]. 

11. CHARACTERISTIC  CURRENTS 

Consider t.he problem of one or more conducting bodies, 
defined by  the surface S, in  an impressed  electric field Ei .  
An operator  equation  for the  current J on S is [SI 

Here r denotes  a field point, r’ a source  point, and e, p, 
and k t.he permittivity, permeability, and  wavenumber, 
respectively, of free space. Physically, - L ( J )  gives the 
electric  intensit.y E at. any point  in space due to  t,he  cur- 
rent J on S. In an  antenna problem, the impressed field 
Ei  is the  negative of the  tangential component of E over 
S,  assumed known. In  a scattering problem, the impressed 
field Ei  is due to known sources  external to S. 

We define the symmetric  product of two  vector  func- 
tions B and C on S a s .  

(B,C) = # B - C d s .  (6) 
S 

The product (B*,C), where the ast.erisk denot,es complex 
conjugate, defines an inner  product,  for the complex Hilbert 
spa.ce of all  square-integrable  vector  functions on S. The 
operator  appearing  in  (1)  has the dimensions of imped- 
ance, and we introduce the  notation 

Z ( J )  = [L(J)Its,. (7) 

That  2 is a  symmetric opera‘cor,  i.e., (B ,ZC)  = (ZB,C), 
follows from the reciprocity  theorem [SI. However, 2 is 
not  a  Hermitian  operator, i.e., (B*,ZC) # (Z*B*,C). Be- 
cause 2 is symmetric, its Hermitian  parts  are  real  and 
given by 

R = - (2 + Z*) 
1 
2 (8 )  
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definite,  i.e.,  all currents  radiate some power, however 
small. 

Next consider the eigenvalue  equa.tion 

Z ( J n )  = v n X ( J n )  (10) 

where V, are eigenvalues, Jn are eigenfunctions, a.nd LIT 

is a weight operat,or to be chosen. The eigenfunct.ions for 
any choice of symmetric M will dia.gonalize 2, but  only 
the choice &I = R also gives ort.hogonality of the radia- 
tion  pat.terns. Hence, we choose $1 = R and  set Z = 
R + j X  in ( lo ) ,  obtaining 

( R  + j X )   ( J n )  = v n R ( J n ) .  (11) 

We next. let. 

vn = 1 + j x ,  (12) 

a.nd cancel  t,he common term R(J,)  in ( l l ) ,  obtaining 

X ( J n )  = hnR(Jn) .  (13) 

B0t.h X and R are  real  symmetric  operators.  Hence, a.11 
eigenvalues X, and eigenfunct,ions Jn must be real. The J,  
must also sat.isfy the usua.1 orthogona.lity  relationships 

(Jm,RJ;) = 0 

(Jm,XJn) = 0 

(Jm,ZJn> = 0 (14) 

where m # 71. Furthermore, since the J,  are real, t.he 
ort.hogonality  relationships  are also valid for inner  prod- 
ucts,  i.e., 

(J,*,RJn) = 0 

(J,*,XJ,) = 0 

(Jm*,ZJn> = 0 (15) 

to be  normalized. If unnormalized currents  are used, the 
factor (J,,RJ,) must be  properly  introduced into  the 
t,heory. 

111. CHARACTERISTIC FIELDS AND PaTTERNS 

The electric field E, and  the  magnetic field H, produced 
by  an eigencurrent J,  on S mil1 be called the ch.aracteristic 
Jields or eigenjklds corresponding to J,. The  set of all 
E,  or H, form a Hilbert space of all fields throughout 
space  produced by  currents on S.  We obtain  orthogonality 
relationships  for the chara.cteristic fields from t,hose for 
characteristic  currents  by means of the complex Poynting 
theorem [SI. Explicitly, the complex power ba.lance for 
current.s J on S is given by 

P = {J*,ZJ) = (J*,RJ)  + j ( J * , X J )  

= 9 E X Heeds + j" //lr ( p H .  H* - e E - E * )  dr  
SI 

(18) 

where SI is  any surface enclosing S and rr is t.he region 
enclosed by SI. Equat,ion (18) is  a  Hermitian  qua.dratic 
form,  for which the associated  Hermit,ian  bilinear  form  is 

P(J,,J,) = (JmB,ZJn) .  (19) 

If Jm a.nd J,  are eigencurrents,  t,hen t.he ort.honormality 
relationships (17) apply,  and we have  from (19) and 
Maxwell's equations, 

# E,,, X H,*-ds + j w  /I[, (pH,.H,* - eE,.E,*) d~ 
SI 

= ( 1  + jL)Srnn. (20) 

This  eqiat.ion ca.n be separated  into  real  and  imaginary 

where nt # n. The choice of { J,) as basis functions  there- 
fore  simultaneously  leads to diagonal matrix representa- 
tions of R, X ,  and 2. We shall call these J, the character- 
istic  currents or eigencurrents of the  conducting  body de- 
fined by S .  

So far t,he eigencurrents are of indet,erminat.e  amplitude. 
Each eigencurrent which radiates  can be  normalized ac- 
cording to 

(Jn*,RJn) = 1  (16) 

i.e., it ra.diat.es unit power. Each eigencurrent  associated 
with an  internal resonance  cannot,  be so normalized,  but, 
they  are not.  needed for  radiation problems.  When  normal- 
ized according to (16), the orthogonality  relationships 
(14) and (15) can  be  combined  with (16) to give 

(JmJRJn) = (Jm*,RJn) = 6mn 

(Jm,XJn> = (Jm*JJn> = L 6 m n  

(Jm,zJn> = (Jm*,ZJn) = (1  + j X n )  6mn (17) 

where 6,, is the Kronecker de1t.a. (0 if m # n, and 1 if 
m = n,). For  further  theory we assume the eigencurrent,s 

parts  to give orthogonality  relationships simi1a.r to  the 
first  two of (17), if desired. 

If the body S is of finite extent, a.nd if SI is chosen to 
be t.he sphere a t  infinit.y ( S ,  of Fig. 1 ) ,  then (20) gives 
ort,hogonality  relationships  for  radiation patterns  and 
fields. On S ,  the  characteristic fields are of the  form of 
out,lvard traveling waves, Le., 

Here 7 = ( p / e ) l I 2  is  t.he  intrinsic  impedance of space, n is 
the  unit  radial vect.or on X,, and (e,+) are  the  angular 
coordinat.es of position  on S,. The complex vector F, of 
(21) is called  t,he characteristic pattern or eigenpatfwn cor- 
responding to  the eigencurrent, J,. Adding (20) to  its con- 
jugate  with m and n interchanged, we find that 

Hence, the characteristic  far fields form an orthonormal 
set, in  the  Hilbert space of all  square-integrable  vector 
functions  on 8,. We can  also  express (22) in  terms of the 
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Fig. 1. Surfaces and coordinates. 

characteristic  magnetic field as 

(“3) 

Finally,  subtracting (20) from its conjugate  with m and n 
intercha,nged, we obtain  the  orthogonality relationship 

/// ( p ~ m . ~ n *  - e ~ m . ~ n * )  ar = hn6,, (24) 

where t,he  integration  extends  over  all  space. For m = 1 2 ,  

(24) states  -that. X, is 2 w  times the  total‘stored magnetic 
energy  minus t.he total  stored electric  energy. (This as- 
sumes  normalization  according t.0 {J,,RJ,) = 1.) 

IV. MODAL SOLUTIONS 

A modal  solution  for t.he current J on a. conducting  body 
can  be  obtained by using the eigencurrents as  both expan- 
sion and  testing funct.ions in  the met.hod of moments [ G I .  
Following this procedure, we assume J to be a linear 
superposition of the mode current,s 

J = anJn ( 2 5 )  

n-here the an are coefficients to be  det,ermined. Substitut- 
ing (25) into t.he operator  equation (l), and using the 
linearity of L, we obt,ain 

n 

[x anLJn - Ei]ran = 0.  (26) 
n 

Xext, the  inner  product of (26) nith each J,  in turn is 
taken, giving the  set of equations 

an(Jm,ZJn) - (Jm,Ei) = 0 (27) 
n 

where m = 1,2, .-- .  Here we have put Ltao = 2, and 
dropped the subscript  tan” on E’. Bemuse of the orthog- 
onality  relationship (17) , (27) reduces to 

~ n ( 1  + j X n )  = (Jn,Ei). ( 2s) 

The right-hand  side of (28) is called the modal excitation 
coe$&n t : 

Vni = {Jn,Ei)  = j$ Jn .Ei  ds. (29) 
S 

Substituting  for an from (28) into (25), we have 6he 
modal  solution  for  t,he current J on S: 

If the eigencurrents J, a.re not normalized  according to 
(16), t,he term 1 + jX, in (30) should  be repla.ced by 

The fields are  linearly  related to  the currents, and hence 
can  also be expressed in modal  form.  Explicitly,  these 
forms are 

(1 + j X n >  ( J n 8 J n ) .  

E=C- - -  8, iE, 
,, 1 + j L  

where E and H are  the fields from J everywhere in space. 
Again, if the eigencurrents are  not normalized, the t.erm 
1 + jX, must be  replaced by (1  + jx,) (Jn ,Wn) .  

Finally, if the reciprocity t.heorem [ 5 ]  is used,  alter- 
native expressions for the modal excitat.ion coeficients  are 
obtained.  For example, if Ei is produced by  an electric 
current Ji, then reciprocal to (29). we have 

(33) 

where t.he int,egration  extends  over t,he impressed currents. 
Similarly, if E i  is produced by a  magnetic current M ,  then 
reciprocal to (29) we have 

(34) 

More  generally, if E i  is produced by  both elect.ric currents 
J’ and ma.gnetic currents MI, then V,’ is given by  the 
sum of (33) and (34). 

V. LINEAR MEASUREMEKTS 

Any  scalar p linearly  related to  the current,, i.e., a 
linear  functional of the  current, will be called a Einmr 
measurement of the current.  Two examples of linear meas- 
urements  are 1)  a component of the current, a t  some point 
on 8, or 2) a component of t.he field ( E  or H )  at,  some 
point, in  space. Every linear  functional of J can be ex- 
pressed as 

P = (Em,J)  (35) 

where Em is a given vector  function, usually an electric 
field on S. For example, if p is t.he j t h  component of the 
field E /  from J ,  t,hen (35) becomes [5], [SI 

E /  = (Ej ,J)  (36) 

where E j  is the electric field on S produced by a  j-directed 
elect,ric dipole I1 = 1 placed at the field point,. If the  jt,h 
component, of H mere desired, then a unit magnetic dipole 
n-ould be placed at   the field point,  and so on. 
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If the modal solut.ion (30) is  substitut.ed  into t.he gen- 
eral measurement  formula (35), there resu1t.s 

where Vnm is the modal measurement  coeficient 

Vnm = (Jn,Em) = % Jn*Emds .  (38) 

Note  that. Vnm is of the same  functional  form as t,he excit.a- 
tion coefficient Vni given by  (29). Hence, (37) is a sym- 
metric  bilinear  functional of Ei  (the impressed field, or 
excitation)  and of Em (the measurement. field, or adjoin;,' 
excitation). Of course, the syrnmet.ry of (37) is a conse- 
quence of the  symmetry of the original operator 2. 

Reciprocal  forms  for the measurement coefficients, anal- 
ogous to (33) and (34) for  excit,ation coefficients, can also 
be w-ritt.en. For example, if the source of Em is elect.ric 
current Jm, t.hen 

S 

Vnm = /// E,.  Jm d T  (39) 

analogous t.0 (33). If the source of Em is magnetic current 
Mm, t,hen 

analogous t.o (34). Finally, if Em is  produced by  both a 
Jm and  an Mm, the mea,surement coefficient Vnm is given 
by t,he sum of (39) and  (40). 

VI. APPLICATION TO RADIATIOK AND 

SCATTERIh'G P R O B L E M S  

TWO import.ant. specialixa.t.ions of the general theory  are 
1) radiation  from  apertures in conducting bodies and 2) 
plane-wave scatt.ering by conducting bodies. Explicit for- 
mulas  for  these  two cases are given  in this section. Other 
problems,  such  as antennas  in  the vicinit.y of conduct,ors 
and near-field mea.surements, are also special cases of t.he 
general  formulas, but t.hey are  not considered explicit,ly. 

Consider a conducting  body of surface S in which one 
or more apertures exist., as  suggested by  Fig. 2. There  are 
sources internal  to S which produce  a tangential electric 
field Etan (assumed known) over the  aperhres.  Then 
Ei = -Etan is the impressed field, a,nd the mode ex- 
cit,ation c0efficient.s (29) become 

V n i  = - # J,, -Eta, ds. (41) 

The radiation pat.t.ern for the  aperture  is  then given by 
the modal solut.ion (31). For comput,at,ion, we must  deal 
with one number  at. a t,ime, say some  component of E a t  
a  particular  position (e,+) on S,. For  this, we pla.ce a 
unit electric dipole I2 = urn a t  (e,+) on S,  and  evaluate 
t,he  modal  measurement. coefficient by (38) and (39). 
This gives 

S 

V n m  = # J n * E m d s  = En.um (42) 
S 

CONDUCTING BODY 

Fig. 2. -4perture antenna. 

'I 

Fig. 3. Conducting scat,terer. 

where E m  is the field produced by  the  distant dipole. 
Explicitly,  in the vicinity of S the dipole field is [5] 

Em = - --3w 
4arm 

exp ( -jkrm) [urn exp ( --jkm. r )  1. (43) 

Here k, is the vector  propaga.tion  consta.nt of the wave 
from I2 = urn and rm is the posit,ion vector t.0 I1 (see  Fig. 2) .  
XOIV (42) becomes 

Vnm = exp ( -jk.rm) # Jn-um exp (-jkm-r) ds. 
4nrm S 

(44) 
Substituting  this  into  (31)  dotted  into Urn, we have 

-.Iw VniRnm 
4flm , 1 + ] A n  

E - U ,  = - exp ( - j k r m )  - (45) 

where the Vni are given by  (41)  and 

Rnm = % Jn-um exp ( -jk,. r )  ds (46) 

are  the plane-wave measurement. coefficients. Equat.ion 
(45) provides  a  convenient  formula for computat,ions. 

Kext, consider a conducting  body of surface S in a 
plane-m-ave scattering problem,  as  suggested by Fig. 3. 
The impressed field is  the ur,it  plane  wave 

S 

Ei  = ui exp ( --jki. r )  (47) 

where ui is the pola.risation  vector and ki is the propaga- 
tion  vector.  The excitat.ion coefficients (29)  are now 

V n i  = Rni = # J n - u i  exp ( -jki.r) cls. (48) 

Note  that  this is of the same  funct>ional  form  as t.he plane- 
wave measurement coefficients (46), hence  t,he  notmation 

S 
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Rni for  (48).  The  determination of the  scattered field a t  
some measurement  position (Om,&,) is  the  same problem 
as the determinat,ion of the radiation field in  the  antenna 
problem.  Hence, the  scattered field in  the direction (Om,4m) 
is given by (45) Kith Vni replaced by Rni, or 

A commonly used parameter in pla.ne-wave scattering 
problems is the echo area, dehed   as  [5] 

u = 47rrm2 I E.um 12. (50) 

Substitut.ing  from (49) into (50), we obtain 

Wote that u is a function of the polarization of the incident 
wave zli and of the measurement  wave urn, as well as of 
the coordinates (Oi ,&)  of t.he incident  wave  direction  and 
(&,,dm) of the  measurement direction. 

VII. DYADIC REPRESENTATIONS 

Any  bilinear  functional  can be represented  in terms of 
a  dyadic  operator, t.he Dirac  bra-ket  notation being well 
suited  for t,his purpose. In the modal  solution  for the 
current,  let Ei) den0t.e the  tangential component of the 
impressed E on S, and J )  a current on S. The character- 
istic  currents  are  denoted by J,)  or (Jn.  Then (30) be- 
comes 

where we have used (29) for the excitation coefficients. 
. Similarly, if (Em denotes the tangent,ial  component, of the 

measurement field Em on S, t.he general  linear  functional 
(37) becomes 

(53) 

where we have used (38) for the measurement. coefficients. 
It is  evident  from  (53) that 

is a  dyadic  representation  for  t.he  inverse  operator  to 2, 
called the spectral  form of Y = Z-l. In terms of (54), 
we can  write (52) as 

J >  = Y E i )  (55) 

which is t.he inverse  equation to our  starting equat.ion 
Z J )  = Ei). Similarly, we can  write  (53)  as 

p = (Em,YEi). (56; 

The inverse to  this equat.ion is 

p = (Jm,ZJi) (57) 

where (Jm is t.he current on S excited by  the measurement 
field (Em and J i >  is the  current on S excited by  the im- 
pressed field E'). 

If the impressed and measurement, fields are produced 
by electric  currents, we can use t,he  reciprocal  formulas 
(33) and (39) for t.he excitation and measurement co- 
efficients. For t.his, we int.roduce the bilinea.r product 

where t,he integrat.ion  is  over  all  space. Now let E }  denote 
the electric field E everywhere in space, and J i }  the im- 
pressed sources everywhere in space. In terms of the mode 
fields En} or {En,  we can now write the electric field (31) 
as 

(59) 

where we have used (33) for the excitation  coeEcients. 
Similarly, if ( J m  denotes the source of the measurement 
field everywhere in space, the general  linear  functional 
(37) becomes 

where we have used (39) for t.he measurement. coefficients. 
It is now evident  that, 

is a dyadic  operator in spectral  form. In  terms of (61), 
we can  write  (59)  as 

E ]  = r J i )  ( 62) 

from which it is evident  tha.t r is a type of the Green's 
function.  Explicitly, it gives the field E due  to J on S 
(sometimes called the scatt.ered field) when the conduct- 
ing  body S is excit.ed by impressed  sources J' elsewhere in 
space.  Similarly, (60) can  be ai t . ten  as  

p = {Jm,I'Ji) (63) 

which is an  alternative  form  for  the general  bilinear  func- 
tional p .  

A development  similar to  the preceding  applies for  the 
H field if the impressed and measurement fields are pro- 
duced by  magnetic  currents. To summarize, let H n ]  or 
{ H ,  represent the magnetic  modal fields, and define the 
magnetic  dyadic  operator 

Yon;, letting Mi]  denote an impressed  magnetic current, 
analogous t,o (59) and (62) we have 
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The Mus sign is due  to  that appearing in (40). It is 
evident that -f. is a magnet,ic Green's function,  giving 
the field H due  to J on S when the  conducting  body is 
excited by impressed sources 111') elsewhere in  space. 
Lett.ing { M m  denote  a  measurement  magnetic current, 
analogous to (60) and (63) we have 

This is the most  general  form  for a bilinear  functional 
when both  the impressed and measurement. currents  are 
magnetic. 

If both electric and magnetic currents exist, it. is con- 
venient to use a six-component formulation  for the prob- 
lem [SI. In  this case, field vectors # = (E&) and source 
vectors K = ( J , M )  are defined, and equations (62) and 
(65) combined into a single six-component, equation. We 
have  no use at present,  for this generalization, and will 
not  pursue it  further. 

Finally, if the electric currents  for  both  the impressed 
and measurement.  sources are specialized to  unit electric 
dipoles on  the  sphere at infinity, we obtain  the bilinear 
scattering  dyadic  introduced  by  Garbacz [l], [ a ] .  To be 
explicit, let  the unit, incident)  plane wave be  produced  by 
the  distant. impressed dipole 

VIII. SCATTERING AND PERTURBATION MATRICES 

The  scattering  matrix was first. defined as t.hat. matrix 
which relates the  amplitudes of incoming spherical modes 
to outgoing  spherical modes [7]. Ilore generally, the in- 
coming and outgoing waves can be expanded  in terms of 
a.rbitrary basis functions. We show that if the character- 
istic fields E, are chosen m the basis of out.going waves, 
and  their conjugat.es En* a.s the basis of incoming waves, 
then  the  scatt.ering ma,trix  is  diagonalized, 

In  a scattering problem the far-zone field can  be ex- 
pressed as  the sun1 of incoming and outgoing  waves as 

For a  given scatterer, for  each  incoming wave Ei, t.here 
is a  unique  outgoing wave Eout. The scattering  operator is 
defined to be that which operates  on Ei, to give E,,,, i.e., 

Eout = SEi,. ( 74) 

Given an outgoing wave Eout, the  conjugate field E,,,* 
will be an incoming wave. This is evident.  from either 
spherical mode theory,  or  consideration of L*, adjoint t.o 
L of ( 2 ) .  The  characteristic fields En are  outgoing waves, 
and we choose them as basis functions for Eout, i.e., 

-4ar The conjugat.es En* are incoming waves, and we choose 
j w  

Ili = - exp ( j k r )u i  t67) them as basis functions  for Ei,, i.e., 

and  let  the measurement  source be the unit dipole Iim = urn. 
Let the p of (60) be urn.E, in which case (60) reduces to 

Ei, = &E 1 n -  * ('76) 
n 

The  scattering  matrix [SI is that which relat.es the column 
~ 

- 4ar 
v,*E = - exp ( j k r )  (Um'En) (En*ui)  vector 6 (components b,) to  the column vector d (com- 

j w  , 1 + j L  . (.6s) ponents a,) according to 

The  pattern functions Fn are defined by (21), and (6s) 
can  be  &itten  in  terms of them as -4 field of the form E, + En* is a source-free field, shown 

6 = [ S l d .  (77) 

- j w  
47rr 1 + . i L  

as follows. The wave equation  for  the field En due  to a 
u,*E = - exp ( - j k r )  (Urn' Fn) ( F n  . Ui) . (69, current Jn is 

. I  

V X V X E,  - k2E, = -jupJn, 

The field E,* satisfies the  conjugate  equation. Kow if ;7=c--- F ,  F, (70) J ,  is real,  as it is for characteristic  currents,  then E,  + En* 

Defining the  dyadic  pattern  operator  as 

1 + jhn satisfies the source-free wave equation.  Hence,  in the  ab- 

we can mi t e  (69) as 

(71) 

sence of a  body, t,he field \vi11 be  a  linear superposit.ion of 
fields of the standing-wave type En + En*, i.e., 

This is the U, component of the  sca.ttered field due  to a I t  is evident  from (75)-(78) that, when no body is present, 
ui polarized incident, lvave. The echo area, defined b): 6 = d and t,he scattering  matrix is the  identity  matrix. 
(50) , is given  by When  a  sca,t.terer is present, the outgoing waves are 

partly  due  to  the impressed field Ei and part,ly due  to  the 
(72;) field from t.he currents J on S,  called the  scattered field 

c7 = - 1 U r n . 5 * U i  p. 
4a E8. The perturbation operator P is defined to be t.hat, which 

The dyadic  operator 5 is  valid  only  for the  far field, not 
operates  on 2Ei, to yield 9, i.e., 

for the  near field. E' = 2PEi,. (79) 
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The factor 2 was introduced by Garbacz [l] for conven- 
ience in  other formulas. The field E8 is an outgoing wa.ve, 
and can  be expanded in  the E, as 

E s  = &En. 
n 

Expansion (76) is still used for Ei,. The perturbation 
matrix [PI is t.hat which relates the column  vector t 
(components c,,) to  the column  vector d according to 

t = 2[P]Q. (81) 

It is  evident  from the definitions of [SI a.nd [PI that 

[SI = [ I  + 2P1 (S2) 

where [I] is the  identity  matrix. 
We  next  show that  both [SI and [PI are  diagonal 

matrices, and obtain  their  elements.  The  impressed field 
Ei is a free-space field, aed hence must be of the  form 
(78). Because of linearity, i t  will suffice to shon- that a 
single-mode impressed field excites only the corresponding 
modal current. Hence, we assume an impressed field 

Ei  = E,,, + E,,,*. ( S3 I 

Then  the mode excitation coefficients (29) are 

Vni = (Jn,EM + Em*) = - (Jn,ZJm + Z*Jm) 

= - ( 1  + jX ,  + 1 - jX,)Smn = -38,,. (S4) 

Thus, all mode coeficients  are zero except Vmi, which is 
-2. From (31) we have 

Hence, if E; ,  is Em*, then Es contains  only E,,, as shown 
by (85). If the incident field contains  many modes, as  in 
(78), then  the  scattered field will contain  a  sum of terms 
of the form of (85). Comparing (231) n-ith (S5) ,  it is 
evident  that. 

r 1 

[PI = 

-1  
1 + j h  

0 

0 

- 1  

... I 
I 

iSG) 

L........................ I 
i.e., [ P ]  is diagonal  with  elements - 1 / (  1 + jh,) . Finally, 
from  (82) we compute  the  scattering  matrix  as 

r 1 

1 + j X ?  
” 

L ............................. 
i.e., [SI is diagonal  with  elements - (1 - j h n )  / (1  + jXn). 
These  formulas  agree  with  those of Garhacz [l]. 

IX. DISCUSSION 
An extensive  t,heory of the characteristic modes of con- 

duct.ing bodies is developed in  this  paper,  starting  from 
the  operator  equation for the  current on the body.  These 
are  the same modes obtained by Garbacz, who start,ed 
from the  scattering  matrix.  The  statement,  made  several 
times by Garbacz  and Wickliff [l], [4], that.  the  pertur- 
bation  operator  transforms converging modes into diverg- 
ing modes of the same  form, is somexhat misleading. This 
pa.per shorn that  the converging modes are  transformed 
into  diverging modes which are  the complex conjugate of 
the converging modes. R e  have  not considered the ques- 
tion of completeness of the  sets of mode functions  in 
Hilbert  space.  Garbacz [l] considers this  question,  and 
we find his arguments  convincing. 

The eigenvalues X, range  from - to + , nit11 those 
of smaIIest magnifude being more important, for radiation 
and  scattering problems.  We  therefore  order the modes 
according to I X1 I 5 I X.? I 5 I I 5 .e.. Xlso: (24) shows 
that.  those modes with positive X have  predominantly 
stored  magnetic  energy, n-hile those Ivith negative X lmve 
predominantly  stored  electric  energy.  We  therefore  call 
those modes with X > 0 incluctiue modes,  a.nd those  with 
h < 0 capacitive modes. A mode having X = 0 is  called an 
exterttally resanant mode.  The modes corresponding  to the 
internal  cavity  resomnces for the conducting  surface  have 
I X I = x ,  and do not  enter  into  radiation  and  scattering 
problems. 

We concur with Garbacz’s  speculation that these modes 
should prove t.o be of value,  both theoretically and com- 
putationally, for radiation  and  scattering problems. In  a 
companion paper [9] a  straightforward  method for com- 
puting  the modes is given. These  computations bea.r out 
the speculation that, for electrically  small and inter- 
mediate size bodies, only a few modes are  needed to char- 
acterize the  radiation  and  scattering properties of the con- 
ducting  body.  This  property, coupled n-ith the orthog- 
onality  properties of the modes? should  make them valu- 
able for synthesis and optimization  problems  in antenna 
and  scattering theory. 
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