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Abstract

The objective of this paper is to summarize the work that has been developed by the authors for the last several years, in
order to demonstrate that the Theory of Characteristic Modes can be used to perform a systematic design of different types of
antennas. Characteristic modes are real current modes that can be computed numerically for conducting bodies of arbitrary
shape. Since characteristic modes form a set of orthogonal functions, they can be used to expand the total current on the
surface of the body. However, this paper shows that what makes characteristic modes really attractive for antenna design is
the physical insight they bring into the radiating phenomena taking place in the antenna. The resonance frequency of modes,
as well as their radiating behavior, can be determined from the information provided by the eigenvalues associated with the
characteristic modes. Moreover, by studying the current distribution of modes, an optimum feeding arrangement can be found
in order to obtain the desired radiating behavior.

Keywords: Antenna theory; numerical analysis; optimization methods; eigenvalues and eigenfunctions; broadband antennas;
antenna feeds; microstrip antennas; monopole antennas; land mobile radio cellular equipment; handset antennas;
reflectarray

1. Introduction

In past years, the rise of wireless communications has fostered
significant interest in antenna design. In particular, the design of
smal atenas or new mobile terminals [1, 2] is currently receiv-

ing a lot of attention, due to market demand. Nevertheless,
designing a handset antenna is not an easy task, as this type of
antenna is subject to very stringent specifications [3]. Small size,
light weight, compact structure, low profile, robustness, and flexi-
bility are the prime considerations conventionally taken into
account in small-antenna design [4]. In addition, as new mobile
handsets are required to operate with multiple standards, their
antennas are expected to grab as much spectrum as possible, so
they may provide multi-band or broadband operation [5].

Unfortunately, as the antenna geometry becomes more
complicated, more often than not there is no closed formulation to
analyze it, and the use of numerical methods [6, 7] becomes
imperative. As a consequence, the design of modem handset
antennas relies on the use of self-developed numerical codes or
commercial electromagnetic simulators -such as IE3D, FEKO,
Empire, or HESS, among others -to evaluate antenna performance
before a physical prototype is fabricated. Under these circum-
stances, the time required for antenna design can be dramatically
reduced using computers. Even with the support of computers, the
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success of the final design depends upon the intuition and previous
experience of the designer. In most cases, the final optimization is
in fact made by "cut and try" methods. As a result, these days
antenna design is very much governed by designer expertise and
know-how.

On the other hand, an alternative and a certainly in-vogue
approach for designing handset antennas consists of using auto-
mated optimization techniques, based on pseudo-random search
algorithms [8]. Typical examples of these techniques are genetic
algorithms [9], artificial neural networks [10], particle-swarm
optimization [ 11 ], or bees algorithms [ 12]. The main advantage of
these methods is that once the optimization algorithm is pro-
granmmed, little interaction with the designer is required, as the
computer is supposed to arrive at the expected specifications
autonomously.

As a matter of fact, although all the above-mentioned design
strategies are really suitable when time-to-market is critical, their
major problem is that they are rather lacking in physical insight, so
real knowledge of the antenna operating principles is mislaid. Con-
sequently, publications giving useful instructions for better antenna
design are scarce. There exist other not-so-common design strate-
gies, such as the Theory of Characteristic Modes, which can allevi-
ate this problem.
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Figure 1. The normalized current distributions at the first resonance (f =2.4 GHz) of the first six eigenvectors, Jn, of a

rectangular plate of width W =4cm and length L 6 6cm.

Figure 7a. The normalized current distribution of the horizon-
tal current mode (J4) at 2.4 GHz of the first eigenvectors of

several planar geometries.

Figure 7b. The normalized current distribution of the vertical
current mode (J2) at 2.4 G~z of the first eigenvectors of sev-

eral planar geometries.
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Figure 8b. The current distribution at 3.4 G~z for the horizon-
tal and vertical current modes of the triangular patch.
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The Theory of Characteristic Modes was first developed by
Garbacz [13] and was later refined by Harrington and Mautz in the
seventies [14, 15]. It was originally applied to antenna-shape syn-
thesis [16, 17], and to control of obstacle scattering by reactive
loading [18]. It was also applied to the analysis of slots in con-
ducting cylinders [ 19] or in perfectly conducting planes [20]. How-
ever, this theory practically fell into disuse later, in spite of the fact
that it leads to modal solutions even for arbitrary shapes. This is
particularly useful in problems involving analysis, synthesis, and
optimization of antennas and scatterers; [21-23].

By definition, characteristic modes are current modes
obtained numerically for arbitrarily shaped conducting bodies.
These modes present really appealing properties, as they not only
make possible a modal analysis of conducting objects, but they also
bring valuable information for antenna design. This is because they
provide a physical interpretation of the radiation phenomena taking
place on the antenna.

Since characteristic modes are independent of any kind of
excitation, they only depend on the shape and size of the conduct-
ing object. Thus, antenna design using characteristic modes can be
performed in two steps. First, the shape and size of the radiating
element are optimized. If the size of the element is scaled, the
resonant frequency of the modes will be modified, whereas if the
shape of the element is varied, not only the resonant frequency but
also the radiating properties of the modes will change. Next, the
optimum feeding configuration is chosen so that the desired modes
may be excited. Few modes are needed for modeling electrically
small conducting bodies. Thus, small and intermediate-size anten-
nas can be fully characterized in a wide operating band by just con-
sidering three or four characteristic modes.

The study presented here is intended to illustrate that charac-
teristic modes can be effectively used to canry out a controlled
design of antennas. In the following sections, characteristic modes
are used to perform systematic analysis and design of different
types of planar antennas. Results are obtained using a Method of
Moments code based on the mixed-potential integral equation
(MPIE) [24] and Rao-Wilton-Glisson (RWG) basis functions [25].
This code has been expressly developed to compute characteristic
modes efficiently over a wide frequency band.

Although the Theory of Characteristic Modes is extensively
described in [14] and [15], for the sake of completeness the next
section includes a revision of the mathematical formulation of this
theory. Numerical examples for a very well-known structure, such
as a rectangular plate, are presented for illustration purposes.

2. Mathematical Formulation of
Characteristic Modes

As explained in [14], characteristic modes or characteristic
currents can be obtained as the eigenfunctions of the following
particular weighted eigenvalue equation:

(1)

where the A0, are the eigenvalues, the j,, are the eigenfunctions or

eigencurrents, and R and X are the real and imaginary parts of the
impedance operator

Z = R + jX. (2)

This impedance operator is obtained after formulating an integro-
differential equation. It is known from the reciprocity theorem that
if Z is a linear symmetric operator, then, its Hermitian parts, R and
X, will be real and symmetric operators. From this, it follows that
all eigenvalues A, in Equation (1) are real, and all the eigenfunc-

tions, J,, can be chosen real or equiphasal [a complex constant
times a real function] over the surface on which they are defined
[14]. Moreover, the choice of R as a weight operator in Equa-
tion (1) is responsible for the orthogonality properties of charac-
teristic modes described in [14], which can be summarized as

(3)

(4)

where 'mn, is the Kronecker delta (0 if mn # n and 1 if m = n)

Consistent with Equation (1), the characteristic modes J,,
can be defined as the real currents on the surface of a conducting
body that only depend on its shape and size, and are independent of
any specific source or excitation. In practice, to compute charac-
teristic modes of a particular conducting body, Equation (1) needs
to be reduced to matrix form, as explained in [ 15], using a Galerkin
formulation [24]:

(5)

Next, eigenvectors, .J,, and eigenvalues, A,, of the object are

obtained by solving the generalized eigenproblem of Equation (5)
with standard algorithms [26].

As an example, Figure 1 illustrates the current distribution at
the first resonance (f = 2.4 GHz) for the first six eigenvectors of a
rectangular plate of width W -4cm and length L =6cm.
Computation of these eigenvectors was done using 128 RWG
functions for expansion and testing. All currents in Figure 1 were
normalized to their maximum value in order to facilitate compari-
son. Additionally, for a better understanding, Figure 2 shows cur-
rent schematics of these six modes. Eigenvector J0 (as it will be

verified later) presents a special inductive nature due, to its cur-
rents forming closed loops over the plate. Eigenvectors J, and J2

which are characterized by horizontal and vertical currents, respec-

Jo J I

Figure 2. Current schematics for the six eigenvectors shown in
Figure 1.
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Figure 3. The azimuthal radiation pattern (09= 901) at 4 GHz of the modal electric fields, E0,9,, produced by the current modes, J,,
of Figure 1.

tively, are the most frequently used modes in patch-antenna appli-
cations, while the rest of the eigenvectors, J3 , J4 , and J5 , are
higher-order modes that might be taken into consideration only at
the highest frequencies.

It is worth noting that the eigenvectors presented in Figure 1
were computed in free space. However, the presence of a ground
plane below the plate would not significantly alter their current
distribution, although it would affect their resonance and radiating
bandwidth [27]. Note also that due to the eigenvectors' dependency
upon frequency, if a structure is to be analyzed in a frequency
range, modes will need to be recalculated at every frequency [28].

On the other hand, electric fields, E,,, produced by
characteristic currents J,, on the surface of the conducting body
are called characteristic fields [ 14]. From Equation (1), it can be
derived that these characteristic fields can be written as

~R(J4) +IX(J4) (6)

Then, from Equation (6), it is deduced that characteristic electric
fields are equiphasal, since they are (I + j& ) times a real quantity.

Orthogonality relationships for characteristic electric fields can be
reached from characteristic currents by means of the complex
Poynting theorem:
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ff E, x flds +IajJff (iifm.H, - 6Em- ,, n*)d-r
S, T,

(7)

Figure 3 depicts the azimuthal radiation pattern (09=90*) at
4 GHz for the modal electric fields, E,,, produced by the current
modes, J,,, of the rectangular plate. It can be observed that the
radiation pattern generated by mode J0 presents a nearly
omnidirectional characteristic, while the rest of modes present a
growing number of lobes as the order of the mode increases.

Due to the above-mentioned orthogonality properties over
both the surface of the body and the enclosing sphere at infinity,
characteristic modes radiate power independently of one another.
Because of this attractive feature, characteristic modes can be used
as a basis set in which to expand the unknown total current, J, on
the surface of the conducting body as

Vn n
n jn

(8)

The term Vn' in Equation (8) is called the modal-excitation coeffi-
cient [14], and it is defined as
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Vn'=KJn,Ei)=f J, .E'dS.
n

40
(9)

The modal-excitation coefficient accounts for the way the position,
magnitude, and phase of the applied excitation influence the con-
tribution of each mode to the total current, J. Consequently, the

product V,,'J,, in Equation (8) models the coupling between the

excitation and the nth mode, and determines if a particular mode is
excited by the antenna feed or the incident field.

The term A, in Equation (8) corresponds with the eigenvalue

associated with the nth characteristic mode. This eigenvalue is of
utmost importance, because its magnitude gives information about
how well the associated mode radiates. From the complex power
balance in Equation (7), it is deduced that power radiated by modes
is normalized to unit value. In contrast, reactive power is propor-
tional to the magnitude of the eigenvalue. Considering a mode is at

resonance when its associated eigenvalue is zero, A,, = 01 , it is

inferred that the smaller the magnitude of the eigenvalue, the more
efficiently the mode radiates when excited. In addition, the sign of
the eigenvalue determines whether the mode contributes to storing
magnetic energy (A,, > 0) or electric energy ( A, < 0).

Figure 4 shows the variation with frequency of the eigenval-
ues for the six current modes of the rectangular plate presented
before. It is observed that all eigenvalues start being negative, they

next resonate (A,, = 0 ), and they finally keep a small constant posi-

tive value. The exceptions are eigenvalues A0 , associated with

mode J0 , which are positive at every frequency. This means that

mode J0 , inherent in planar structures and wire loops, exhibits

special behavior, as it does not resonate. If this mode were excited,
it would only contribute to an increase in magnetic reactive power.
For the particular case of the rectangular plate, as eigenvalues con-
tinue with very small values after resonance, it is difficult to iden-
tify where each curve passes though zero, and hence at which fre-
quency each mode resonates.

Finally, it is worth mentioning that the real nature of
characteristic modes derived from Equation (1) constitutes an
advantage in comparison with complex natural modes directly

obtained from impedance matrix [Z]. Working with complex

basis functions leads to an increase in the complexity of computa-
tion, since it is necessary to give different treatment to the real and
imaginary parts of the current to get accurate results [29]. Another
drawback of natural modes is that their eigenvalues are also com-
plex, and they thus are not so easy to analyze and explain physi-
cally. The next section explains in detail how to make the most of
the information provided by eigenvalues to perform a complete
modal characterization of an antenna.

3. Physical Interpretation of
Characteristic Modes

As exposed before, an analysis of the eigenvalue variation
with frequency is very usefuil for antenna design, as it brings
information about the resonance and the radiating properties of the
current modes. Nevertheless, in practice, other alternative repre-
sentations of the eigenvalues are preferred.

Since the modal expansion of the current described in Equa-
tion (8) is inversely dependent upon the eigenvalues, it seems more
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Figure 4. The variation with frequency of the eigenvalues, A,,,

associated to the current modes, J1,, of the rectangular plate

depicted in Figure 1.
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Figure 5. The variation with frequency of the modal signifi-
cance (MS) related to the current modes J1,, of Figure 1.

consistent to analyze the variation of the term I rather than
1 + j4A,

the variation of the isolated eigenvalue. This term is usually called
the modal significance (MS), as it represents the normalized
amplitude of the current modes [23]. This normalized amplitude
only depends on the shape and size of the conducting object, and it
does not account for excitation.

Figure 5 depicts the variation with frequency of the modal

significance related to current modes J,, of the rectangular plate of

Figure 1. The resonance of each mode can be identified by a
maximum value of one in the modal-significance curves. This
means that the nearer the curve is to its maximum value, the most
effectively the associated mode contributes to radiation. The radi-
ating bandwidth of a mode can then be established according to the
width of its modal-significance curve near the maximum point. As
shown in Figure 5, for the case of the rectangular plate of dimen-
sion 4 cm x 6 cm, all characteristic modes except for mode J0 pre-

sent quite efficient radiating behaviors, as their MS curves stand
slightly below the maximum value of one, after resonance.

However, there exists another even-more-intuitive
representation of the eigenvalues, which is based on the use of
characteristic angles. Characteristic angles are defined in [30] as

IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, October 2007



a,, = 180 - tan-I(l) (10)

From a physical point of view, the characteristic angle models the
phase difference between a characteristic current, Jn, and the
associated characteristic field, E,,. Figure 6 presents the variation
with frequency of the characteristic angle, an, associated with the
current modes of the rectangular plate of Figure 1. Observe that a
mode resonates when A4 = 0, that is, when its characteristic angle
is a,, =180'. Therefore, when the characteristic angle is close to
1800, the mode is a good radiator. When the characteristic angle is
near 90' or 2700, the mode mainly stores energy. Thus, the radiat-
ing bandwidth of a mode can be obtained from the slope at 1800 of
the curve described by the characteristic angles.

Although the information given by Figure 6 could have also
been extracted from Figure 4 or Figure 5, the characteristic-angle
representation is often preferred, as it is the most intuitive repre-
sentation. From Figure 6, the resonance frequency of each mode
can be easily identified by looking for the points where a,, = 1800.

Hence, mode J, resonates at 2.2 GHz, mode J2 at 5 GHz, mode
J3at 4.2 GHz, mode J4 at 5.6 GHz, and mode J15 at 10 GHz.

The special nature of the nonresonant inductive mode, ~J0, is also
observed in Figure 6, since its associated angle remains below 1800
at every frequency.

Finally, it should be emphasized that the modal study pre-
sented here for the rectangular plate could also have been per-
formed for planar structures of any shape. It is worth mentioning
that characteristic modes present quite a predictable behavior *in
planar structures, whatever is their shape. As an example, Figure 7
shows the normalized current distribution at 2.4 GHz of the first
eigenvector, J1 , and the second eigenvector, J2, of several planar
geometries. From these results, it can be derived that the first
eigenvector, J1. is always characterized by a horizontal current
flow, except for the contour where it follows the perimeter of the
structures. Likewise, the second eigenvector, J2 , presents vertical
currents along the different plates, with the exception of the con-
tour.

4. Design Examples

This section is focused on presenting several antenna designs
that have been achieved by direct application of the Theory of
Characteristic Modes. Examples comprise a patch-antenna design,
reflectarrays, a planar-monopole desigu, and the examination of a
novel design concept for handset antennas.

4.1 Arbitrarily Shaped Microstrip Patches
with Circular Polarization

it is a well-known fact that to get circular polarization from a
microstrip patch, it is necessary to combine two orthogonal and
linearly polarized modes, with the same current amplitude and in
phase quadrature. The orthogonality properties of characteristic
modes make the generation of circular polarization in arbitrary
patches possible in an easy and intuitive way. For the sake of
example, let us describe the procedure carried out to design a cir-
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cularly polarized isosceles-triangular patch antenna using charac-
teristic modes. The dimensions of this triangular patch are shown
in Figure 8a. The current distribution at 3.4 GHz of the modes to
be combined -which are the horizontal and the vertical current
modes -is shown in Figure 8b. From the information provided by
the modal-significance curves in Figure 9a, it can be determined
that both modes present exactly the same current amplitude at
3.4 Gllz. Moreover, from the characteristic-angle curves presented
in Figure 9b, it can be derived that at 3.4 GHz, both modes present
a 90' phase difference. Hence, if these two modes were properly
excited and combined, they would yield circular polarization at
3.4 Gl~z. So, the next step is to identify' where the feed point
should be located to excite these modes.

Figure 10 shows the optimum feed position where the two
modes present exactly the same current amplitude. This point cor-
responds to the minimum value obtained after subtracting the two
current distributions in Figure 8b at 3.4 GHz. Last of all, the axial
ratio plotted in Figure 11 - which was obtained by using an aper-
ture feed with a 450 rotation located at the previously specified
point -attests to the fact that the triangular patch is circularly
polarized in the broadside direction at 3.4 GHz.

4.2 Optimization of the Polarization of
Reflectarrays; Using Characteristic Modes

Another interesting application of characteristic modes is to
adjust the phase of the field reflected by the individual elements of
a reflectarray antenna [31]. As described in [14], the eigenvalues,

Aare related to the scattering coefficient, S, , by

270
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.n180
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Figure 6. The variation with frequency of the characteristic
angle, a,,, associated with the current modes of the rectangular
plate in Figure 1.

4 cm

Figure 8a. The dimensions of the triangular-patch antenna
placed over an infinite ground plane with air dielectric.
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. -jAn
I1+ jA,

(11)

Then, the reflection phase of the nth mode can be expressed as

(12)

Since Equation (12) does not depend on the excitation, when con-
sidering the illuminating feed the total reflection phase will be a
combination of the reflection phases of the excited modes.

Typically, square and rectangular patches are the most widely
used elements for reflectarray applications, due to their simplicity.
However, they do not always provide the desired bandwidth per-
formance. Recently, the use of ridges has been proposed in order to
improve the bandwidth performance of rectangular patches [32].
However, this solution degrades the cross-polarization level, espe-
cially for the case of oblique incidence. In general, a square patch
excited by an obliquely incident plane wave presents currents on its
surface flowing in a diagonal direction. Figure 12a shows the cur-
rent distribution at 8 GHz generated by a 0i -polarized incident
plane wave in the direction 09 30' and 0 = 450 over a square
patch of dimension 15 mmn, placed 3 mm. above an infinite ground
plane. This current flows in a diagonal direction (-45') because of
the excitation of two orthogonal degenerated modes: The vertical
current mode (Figure 1 2b), and the horizontal current mode (Fig-
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**'... Vertical Mode
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5,5 6.0
Frequency (GHz)

Figure 9a. The characterization of the horizontal and vertical
current modes of a triangular patch: the modal-significance
curves.
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Figure 9b. The characterization of the horizontal and vertical
current modes of a triangular patch: the characteristic angle
variation with frequency.
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Figure 1 lb. The phase difference for the broadside direction
for an aperture-coupled feed at 450*

ure 12c). The radiation patterns at 8 GHz, due to the total current,
in the x-z and y-z planes are plotted in Figure 13. As a result of the
excitation of the two degenerated modes, the theta and phi compo-
nents of the electric field are present in both planes.

One solution to improve the polarization purity of the square
patch for the case of oblique incidence is to split the degenerated
modes, so that only one of them is excited at the desired frequency.
This can be accomplished just by dividing the patch in two rectan-
gular strips along the direction of the desired polarization [33].
Figure 14 illustrates the normalized current distribution at 8 GHz
for the first three modes of the square patch divided into two verti-
cal strips. When the square is divided along the y-axis direction the
vertical mode is preserved, while the horizontal mode in Figure 14,
the current of which is interrupted by the gap, resonates at a higher
frequency. Additionally, a new vertical mode also appears, with
currents flowing with opposite phase in the strips. Figure 15 shows
curves of the reflection phase as a function of frequency associated
with the aforementioned modes of the two vertical strips. This
reflection phase was obtained using Equation (12). For the sake of
comparison, Figure 15 also includes the reflection phase of the
vertical mode of the square patch. From Figure 15, it can be deter-
mined that the vertical-current mode of the two vertical strips pre-
sents the same reflection phase as the vertical mode of the com-
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Figure 12. (a) The total current at 8 GHz for a square patch when excited by a 0 -polarized incident plane wave (08=300, 0 = 450);

(b) The vertical current mode at 8 GHz; (c) The horizontal current mode at 8 GE~z.
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Figure 10. The optimum feed position to obtain circular polari-
zation in a triangular patch. Figure 14b. The normalized current distribution at 8 GE~z for

the vertical current mode with currents flowing in the opposite
way for two vertical strips placed 3 mmn above an infinite
ground plane.

6.75 mm y4

15 mm x

Figure 14a. The normalized current distribution at 8 GHz for
the vertical current mode of two vertical strips placed 3 mm
above an infinite ground plane.

IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, October 2007

Figure 14c. The normalized current distribution at 8 Gl~z for
the horizontal current mode of two vertical strips placed 3 mmn
above an infinite ground plane.
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Figure l7b. The y-z plane radiation pattern generated by the
current plotted in Figure 16.

plete square patch. It can also be determined that the resonance
(p,= 0) of the horizontal mode is shifted to higher frequencies.

Finally, when the vertical strips are placed 3 mm above an
infinite ground plane and excited with the 0 -polarized incident
plane wave used in the previous case, this results in the current
sketched in Figure 16. This current, which flows in the vertical
direction, very much resembles the vertical-current mode shown in
Figure 14a. This means that only the vertical-current mode is
excited. Figure 17 shows the radiation patterns in the x-z and y-z

planes generated by the current plotted in Figure 16. It is now
observed that the phi component of the electric field is only present
at the x-z plane, and the theta component is only present at the y-z

plane.

To sum up, by means of characteristic modes it has been
demonstrated that for the case of oblique incidence, the polariza-
tion purity of a square patch can be improved just by dividing the
patch into two rectangular strips in the direction of the desired
polarization. With this simple modification of the square patch, the
bandwidth performance of the fundamental mode is preserved,
while the cross-polar component is very much reduced.
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4.3 Double-Fed Planar Monopole Antennas

Planar monopoles are very-well-known antennas that have
long been used in mobile communications, due to their wide
impedance bandwidths, omnidirectional radiation patterns, simple
structures, and low cost. Among the different monopole geome-
tries, the circular disk has been reported to yield maximum band-
width [34]. Later, in [35] was shown that although the square
monopole provided smaller bandwidth than the circular monopole,
its radiation pattern suffered less degradation within the impedance
bandwidth. Nonetheless, using characteristic modes it can be dem-
onstrated that with a proper feeding configuration, the square
monopole delivers approximately the same input bandwidth as the
circular monopole, but with improved polarization purity.

Let us consider a square planar monopole, analyzed from the
image-theory point of view. As shown in Figure 18a, the monopole
can be modeled as a planar plate with two narrow slits that account
for the feeding gap. In patch-antenna design, the insertion of nar-
row slits at the patch's nonradiating edges is a commonly used
technique for obtaining compact antennas [5]. The slits force the
current to meander, so the resonant frequency decreases. The main
problem with this technique is that the current meandering results
in a horizontal component of the current, which degrades the
polarization and bandwidth of the antenna. With the aim of veri-
fying this assessment, Figure 18 illustrates the current distribution
at resonance of the vertical-current mode of a rectangular plate of
dimensions 8.5 cm x 4 cm, with and without slits. The vertical-cur-
rent mode of the structure with slits resonates at 1.3 GHz, and pre-
sents a horizontal current flow near the slits. In contrast, the verti-
cal-current mode of the complete rectangular plate resonates at a
higher frequency, 1.6 GHz, and displays pure vertical currents.
Moreover, currents in the rectangular plate are much more intense
than in the plate with slits, for the same color scale.

Let us continue studying the curves showing characteristic
angle as a funiction of frequency depicted in Figure 19. These
curves demonstrate that the vertical-current mode of the rectangu-
lar plate offers broader radiating bandwidth than the plate with
slits, since its associated characteristic angle stands near 1800 in a
wider frequency range. From these results, it arises that the band-
width performance of the square monopole would improve if only
the existence of vertical currents were allowed. This can be
accomplished using the double-fed configuration shown in Fig-
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Figure 19. Curves of the characteristic angle as a function of
frequency obtained for the rectangular plates presented in
Figure 18.

Figure 20. The prototype of the double-fed square monopole.
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Figure 21. A comparison of the VSWR referred to 50 L) of a
double-fed square monopole and a single-fed square monopole
of the same dimension.

ure 20. This square monopole, already presented in [36], uses a
feeding structure that consists of a splitting network connected to
two symmetrical ports at the base of the monopole. The symmetry
of the ports prevents the excitation of horizontal currents, and
assures that only the dominant vertical-current mode is present in
the structure. The square dimension of the monopole is L = 4 cm.
Full details of the rest of dimensions of the antenna are given in
[36].

To conclude this section, Figure 21 compares the voltage-
standing-wave ratio (VSWR) of the double-fed square monopole to
that of a single-fed square monopole of the same dimension. These
results for the VSWR were obtained using the commercial electro-
magnetic software from Zeland, IE3D. As it was expected from the
previous discussion, when using a double-feed configuration, the
impedance bandwidth of the square monopole was greatly
improved. Figure 22 reveals that simulated and measured results
for the return loss of the prototype were in good agreement. For
brevity, a demonstration of the reduction of the cross-polar compo-
nent of the radiation pattern for the double-fed square monopole
has not been included, yet it can be found in [36].
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4.4 Chassis-Antenna Modes in
Cellular-Phone Handsets

As mentioned before, in recent days a lot of investigation has
been focused on designing small antennas for mobile terminals.
Among compact antennas, planar inverted-F antennas (PTFAs) are
the most commonly employed for GSM900/1 800 cellular-phone
handsets. PLEAs are quarter-wavelength resonating antennas that
can be considered to be probe-fed shorted patches over an infinite
ground plane [5]. Double-band and triple-band operation can be
achieved by inserting slits in the PIFA's radiating path [37, 38].
However, PIFAs present two main drawbacks. The first is that as
microstrip patches, they are inherently narrow-bandwidth antennas.
Moreover, because of their compactness, their performance is sub-
ject to the well-known fundamental limits on small antennas [3].

Recently, new design strategies have been explored in order
to increase the radiation efficiency of handset antennas. An exam-
ple of an innovative PlEA design is a design that considers the
printed-circuit board (PCB) of the mobile unit as part of the
antenna [39]. Since the mobile PCB -which acts as the antenna's
ground plane -presents resonant dimensions at mobile frequen-
cies, its shape and size affect the antenna's performance in a sig-
nificant way. In fact, at the lowest frequencies of operation, the
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Figure 22. A comparison of simulated and mi
the return loss referred to 50 £2 of the ant
Figure 20.

PCB is the main radiator, while the antenna only works as a probe
to excite the PCB's current modes. Obviously, to design an antenna
from this new perspective, an in-depth knowledge of the current
modes of the structure is needed. To that purpose, the Theory of
Characteristic Modes may be very helpful [40].

The next example shows the procedure carried out to design a
handset antenna using the Theory of Characteristic Modes. Fig-
ure 23 shows the normalized current distribution at the first reso-
nance (1.1I GHz) for the first six characteristic modes of the
antenna, which is based on the PCB-resonance design concept. The
antenna can be considered either as a PIFA over a finite ground
plane, or as a folded radiating ground plane. The dimensions of the
antenna are L=100mm, W=4Omm, W, =35mim, h=l0nmm,

and L, = 49.15 mm. Note that dimensions L and W coincide

approximately with the length and width of the PCB of a common
mobile telephone. Arrows have been plotted together with charac-
teristic currents for a better understanding of the current flow. As
depicted in Figure 23, there are two modes, J01 and J02, with cur-

rents forming closed loops. It will be verified later, with the infor-
mation given by characteristic angles, that modes J01 and J02 are

special nonresonant modes. Other modes, such as J1 , J3 , and J4 ,

exhibit longitudinal currents along the structure. Mode J'1 is the

fundamental mode, and it flows uninterrupted from the open end
on the upper plate to the open end on the lower plate. This funda-
mental mode resonates when the current path is approximately a
half wavelength, and it is a folded version of mode J, in Figure 1.

Modes J13 and J4 are higher-order longitudinal modes, which pre-

sent one current null and two current nulls along the structure.
respectively. Finally, mode J2 is the only mode that presents trans-

verse currents.

The resonance frequency and radiating bandwidth of the

leasurement above-described current modes can be obtained from characteristic
:_3D simulation angles. Figure 24 plots characteristic angles associated with the

current modes in Figure 23 as a function of frequency. It is
observed that modes J0 and J02 do not resonate, and present an

inductive contribution at every frequency. Longitudinal-current
6 7 8 modes JI, J13, and J4 resonate at 1. 1 GHz, 1.7 GHz, and

3.25 GHz, respectively, while the transverse mode, J2, resonates

easured results for at 3.35 GHz. With regard to radiating bandwidth, the poorest radi-
eana prototype in ating mode is JI, since it exhibits the characteristic-angle curve

with the steepest slope at 180'.
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Figure 24. The characteristic angle variation with frequency
for the first six characteristic modes of the folded radiating
ground plane.
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Once the modal analysis of the structure has been performed,
the next step is to select an optimum feeding configuration to prop-
erly excite the desired modes. For the case of a cellular-phone
handset antenna, longitudinal current modes seem to be the most
convenient modes to excite, as they resonate around GSM and
UNITS operating bands, and they present good radiating band-
width. The optimum feed should produce a voltage difference in
the structure that may favor the appearance of the current distribu-
tion of longitudinal modes. A small planar monopole seems to be
the best choice, since it creates a distributed voltage difference
between the bottom and upper plates. Additionally, this feeding
monopole behaves as a wideband impedance transformer between
the feed port and the upper plate, providing better performance
than a classical coaxial probe [41]. Consequently, a bowtie-shaped
planar monopole has been selected to excite the folded radiating
ground plane. The monopole is bowtie in shape rather than rectan-
gular or square because the bowtie has more parameters to adjust,
and it is therefore easier to achieve maximum matching using this

IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, October 2007



6.75 mm :

Figure 16. The total current at 8 GHz for two vertical strips
when excited by a g0 -polarized incident plane wave in the
direction 0 = 300, 0 45.

(a) f=1.3GHz (b) f =1.6 GHz:

Figure 18. The current distribution at resonance for the verti-
cal current mode of a rectangular plate- of dimensions 8.5 cm x
4 cm: (a) with slits; (b) without slits.
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Figure 23. The normalized current distribution at the first resonance (f = 1. 1GHz) of the first six characteristic modes J, of a

folded radiating ground plane.

IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, October 2007 6

l5mmI -

4 cm

x

I-

is

le

8.5 Cm

W S

'S

(e) J. M J4

63



.0 ~w 2

99 WI

WP

Figure 25. The dimensions of the feeding bowtie monopole.

Figure 29a. The prototype of the slotted folded radiating
ground plane fed with a bowtie-shaped monopole.

Figure 26. The geometry of the folded radiating ground plane
with a bowtie-shaped feeding monopole.
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Figure 27. The characteristic angle variation with frequency
for the first seven characteristic modes of the folded slotted
radiating ground plane.
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Figure 28. The contribution of the different modes to the total
power radiated by the antenna.
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Figure 29b. Another view of the prototype of the slotted folded
radiating ground plane fed with a bowtie-shaped monopole.
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Figure 30. The simulated and measured return loss for the
antenna prototype in Figure 29.
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Figure 31 a. The radiation pattern in the y-z plane for the slot-
ted folded radiating ground plane at 900 MHz (solid line: E9 ;
dashed line: EO).
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Figure 311b. The radiation pattern in the x-y plane for the slot-
ted folded radiating ground plane at 900 MHz (solid line: E9 ;
dashed line: EO).
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Figure 31c. The radiation pattern in the y-z plane for the slot-
ted folded radiating ground plane at 1800 MHz (solid line: E9 ;
dashed line: EO).
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Figure 31d. The radiation pattern in the x-y plane for the slot-
ted folded radiating ground plane at 1800 MHz (solid line: EO;
dashed line: EO).
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shape. Figure 25 presents the dimensions of the feeding bowtie
monopole, which after an optimization process resulted in
h-l1nim, h1 -h 2-- 4.75mm, wp~1mm, w1 -l6mrn, and

w2 =32 mm. Using this wideband feeding configuration, the struc-

ture yielded a return loss less than -6 dB from 1.2 GHz to up to
6 GHz. Note that -6 dB is the typical reference value considered in
mobile handsets.

However, the antenna's impedance matching can be
improved by inserting slits in the lower plate of the structure, as
shown in Figure 26, with Lj = 72.5 mm, R, = 48mnm, and

R2= 65.25 mm. These slits, of 2 mmn width and 25 mmi length, not

only produce a meandering effect that reduces the resonant fre-
quencies of longitudinal modes, but they also change the current
distribution of these modes close to the source and favor its excita-
tion. This reduction in the resonance frequency of modes is con-
firmed by Figure 27, which presents the variation with frequency
of the characteristic angles associated with the first seven modes of
the slotted folded ground plane. Mode J15, which has not been

represented before, is a higher-order longitudinal mode that pre-
sents three current nulls along the structure. Figure 28 analyzes the
contribution of each mode to the total power radiated by the
antenna. Note that the first power maximum, approximately at
0.9 GHz, is caused by mode J1 ; the second maximum, at 1.8 GHz,

is due to the excitation of mode J3 ; and the third maximum, at

3.2 GHz, results from the contribution of longitudinal modes J13,

J14, and .J5. Note also that transverse mode J2 is weakly coupled

to the excitation.

A prototype of the antenna was fabricated to validate the
simulated results. Photographs of the prototype can be seen in Fig-
ure 29. Figure 30 shows that the return loss obtained using IE3D
and measured for the antenna prototype resembled each other quite
a lot at the lowest frequencies. As observed, the antenna was well
matched at the GSM and UMTS operating bands. Finally, Fig-
ure 31 illustrates the radiation patterns in the z-y and x-y planes at
900 MHz and 1800 MHz. The omnidirectional behavior observed
in both bands makes the antenna a good candidate for mobile
handsets.

5. Conclusions

Design examples of different types of antennas have been
presented, with the aim of demonstrating that characteristic modes
are really helpful for antenna design and optimization. In contrast
to other classical design methods, characteristic modes bring
physical insight into the radiating behavior of the antenna, so a
controlled design can be performed. The resonance frequencies of
the modes, as well as their radiating behavior, can be determined
from the information provided by eigenvalues. Moreover, having
in mind the current distribution of the modes, the geometry of the
antenna can be modified to accomplish the desired specifications,
and an appropriate feeding configuration can be selected in order to
excite the desired modes.
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